MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0sr Structured version   Visualization version   GIF version

Theorem mulgt0sr 10264
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))

Proof of Theorem mulgt0sr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 10227 . . . . 5 <R ⊆ (R × R)
21brel 5416 . . . 4 (0R <R 𝐴 → (0RR𝐴R))
32simprd 491 . . 3 (0R <R 𝐴𝐴R)
41brel 5416 . . . 4 (0R <R 𝐵 → (0RR𝐵R))
54simprd 491 . . 3 (0R <R 𝐵𝐵R)
63, 5anim12i 606 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴R𝐵R))
7 df-nr 10215 . . 3 R = ((P × P) / ~R )
8 breq2 4892 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R [⟨𝑥, 𝑦⟩] ~R ↔ 0R <R 𝐴))
98anbi1d 623 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R )))
10 oveq1 6931 . . . . 5 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
1110breq2d 4900 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )))
129, 11imbi12d 336 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))))
13 breq2 4892 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R [⟨𝑧, 𝑤⟩] ~R ↔ 0R <R 𝐵))
1413anbi2d 622 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (0R <R 𝐴 ∧ 0R <R 𝐵)))
15 oveq2 6932 . . . . 5 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
1615breq2d 4900 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R (𝐴 ·R 𝐵)))
1714, 16imbi12d 336 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (((0R <R 𝐴 ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R )) ↔ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))))
18 gt0srpr 10237 . . . . 5 (0R <R [⟨𝑥, 𝑦⟩] ~R𝑦<P 𝑥)
19 gt0srpr 10237 . . . . 5 (0R <R [⟨𝑧, 𝑤⟩] ~R𝑤<P 𝑧)
2018, 19anbi12i 620 . . . 4 ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) ↔ (𝑦<P 𝑥𝑤<P 𝑧))
21 simprr 763 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → 𝑤P)
22 mulclpr 10179 . . . . . . . 8 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
23 mulclpr 10179 . . . . . . . 8 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
24 addclpr 10177 . . . . . . . 8 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
2522, 23, 24syl2an 589 . . . . . . 7 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
2625an4s 650 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
27 ltexpri 10202 . . . . . . . . 9 (𝑦<P 𝑥 → ∃𝑣P (𝑦 +P 𝑣) = 𝑥)
28 ltexpri 10202 . . . . . . . . 9 (𝑤<P 𝑧 → ∃𝑢P (𝑤 +P 𝑢) = 𝑧)
29 mulclpr 10179 . . . . . . . . . . . . . . . . 17 ((𝑣P𝑤P) → (𝑣 ·P 𝑤) ∈ P)
30 oveq12 6933 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (𝑥 ·P 𝑧))
3130oveq1d 6939 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))))
32 distrpr 10187 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P (𝑤 +P 𝑢)) = ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢))
33 oveq2 6932 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑤 +P 𝑢) = 𝑧 → (𝑦 ·P (𝑤 +P 𝑢)) = (𝑦 ·P 𝑧))
3432, 33syl5eqr 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) = (𝑦 ·P 𝑧))
3534oveq1d 6939 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 +P 𝑢) = 𝑧 → (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))))
36 vex 3401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑦 ∈ V
37 vex 3401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑣 ∈ V
38 vex 3401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑤 ∈ V
39 mulcompr 10182 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 ·P 𝑔) = (𝑔 ·P 𝑓)
40 distrpr 10187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓 ·P (𝑔 +P )) = ((𝑓 ·P 𝑔) +P (𝑓 ·P ))
4136, 37, 38, 39, 40caovdir 7147 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 +P 𝑣) ·P 𝑤) = ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))
42 vex 3401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
4336, 37, 42, 39, 40caovdir 7147 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 +P 𝑣) ·P 𝑢) = ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢))
4441, 43oveq12i 6936 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
45 distrpr 10187 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 +P 𝑣) ·P 𝑤) +P ((𝑦 +P 𝑣) ·P 𝑢))
46 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P 𝑤) ∈ V
47 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ·P 𝑢) ∈ V
48 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ·P 𝑤) ∈ V
49 addcompr 10180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 +P 𝑔) = (𝑔 +P 𝑓)
50 addasspr 10181 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P ))
51 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 ·P 𝑢) ∈ V
5246, 47, 48, 49, 50, 51caov4 7144 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢))) = (((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) +P ((𝑦 ·P 𝑢) +P (𝑣 ·P 𝑢)))
5344, 45, 523eqtr4i 2812 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = (((𝑦 ·P 𝑤) +P (𝑦 ·P 𝑢)) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢)))
54 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ·P 𝑧) ∈ V
5548, 54, 51, 49, 50caov12 7141 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑦 ·P 𝑧) +P ((𝑣 ·P 𝑤) +P (𝑣 ·P 𝑢)))
5635, 53, 553eqtr4g 2839 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) = ((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
57 oveq1 6931 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 +P 𝑣) ·P 𝑤) = (𝑥 ·P 𝑤))
5841, 57syl5eqr 2828 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 +P 𝑣) = 𝑥 → ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)) = (𝑥 ·P 𝑤))
5956, 58oveqan12rd 6944 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → (((𝑦 +P 𝑣) ·P (𝑤 +P 𝑢)) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
6031, 59eqtr3d 2816 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)))
61 addasspr 10181 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤)))
62 addcompr 10180 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) +P (𝑣 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
6361, 62eqtr3i 2804 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ·P 𝑧) +P ((𝑦 ·P 𝑤) +P (𝑣 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
64 addasspr 10181 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
65 ovex 6956 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)) ∈ V
66 ovex 6956 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ·P 𝑤) ∈ V
6748, 65, 66, 49, 50caov32 7140 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = (((𝑣 ·P 𝑤) +P (𝑥 ·P 𝑤)) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))
68 addasspr 10181 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢)))
6968oveq2i 6935 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) = ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))))
7064, 67, 693eqtr4i 2812 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ·P 𝑤) +P ((𝑦 ·P 𝑧) +P (𝑣 ·P 𝑢))) +P (𝑥 ·P 𝑤)) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)))
7160, 63, 703eqtr3g 2837 . . . . . . . . . . . . . . . . . . 19 (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
72 addcanpr 10205 . . . . . . . . . . . . . . . . . . 19 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑣 ·P 𝑤) +P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))) = ((𝑣 ·P 𝑤) +P (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
7371, 72syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢))))
74 eqcom 2785 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) ↔ (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
75 ltaddpr2 10194 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P → ((((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) = ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7674, 75syl5bi 234 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7776adantl 475 . . . . . . . . . . . . . . . . . 18 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) = (((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) +P (𝑣 ·P 𝑢)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7873, 77syld 47 . . . . . . . . . . . . . . . . 17 (((𝑣 ·P 𝑤) ∈ P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
7929, 78sylan 575 . . . . . . . . . . . . . . . 16 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
8079a1d 25 . . . . . . . . . . . . . . 15 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → (((𝑦 +P 𝑣) = 𝑥 ∧ (𝑤 +P 𝑢) = 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8180exp4a 424 . . . . . . . . . . . . . 14 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → ((𝑦 +P 𝑣) = 𝑥 → ((𝑤 +P 𝑢) = 𝑧 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8281com34 91 . . . . . . . . . . . . 13 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (𝑢P → ((𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8382rexlimdv 3212 . . . . . . . . . . . 12 (((𝑣P𝑤P) ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8483expl 451 . . . . . . . . . . 11 (𝑣P → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑦 +P 𝑣) = 𝑥 → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8584com24 95 . . . . . . . . . 10 (𝑣P → ((𝑦 +P 𝑣) = 𝑥 → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))))
8685rexlimiv 3209 . . . . . . . . 9 (∃𝑣P (𝑦 +P 𝑣) = 𝑥 → (∃𝑢P (𝑤 +P 𝑢) = 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8727, 28, 86syl2im 40 . . . . . . . 8 (𝑦<P 𝑥 → (𝑤<P 𝑧 → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))))
8887imp 397 . . . . . . 7 ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
8988com12 32 . . . . . 6 ((𝑤P ∧ ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9021, 26, 89syl2anc 579 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
91 mulsrpr 10235 . . . . . . 7 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
9291breq2d 4900 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ 0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ))
93 gt0srpr 10237 . . . . . 6 (0R <R [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)))
9492, 93syl6bb 279 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ↔ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))<P ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤))))
9590, 94sylibrd 251 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑦<P 𝑥𝑤<P 𝑧) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
9620, 95syl5bi 234 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((0R <R [⟨𝑥, 𝑦⟩] ~R ∧ 0R <R [⟨𝑧, 𝑤⟩] ~R ) → 0R <R ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R )))
977, 12, 17, 962ecoptocl 8123 . 2 ((𝐴R𝐵R) → ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)))
986, 97mpcom 38 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wrex 3091  cop 4404   class class class wbr 4888  (class class class)co 6924  [cec 8026  Pcnp 10018   +P cpp 10020   ·P cmp 10021  <P cltp 10022   ~R cer 10023  Rcnr 10024  0Rc0r 10025   ·R cmr 10029   <R cltr 10030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-omul 7850  df-er 8028  df-ec 8030  df-qs 8034  df-ni 10031  df-pli 10032  df-mi 10033  df-lti 10034  df-plpq 10067  df-mpq 10068  df-ltpq 10069  df-enq 10070  df-nq 10071  df-erq 10072  df-plq 10073  df-mq 10074  df-1nq 10075  df-rq 10076  df-ltnq 10077  df-np 10140  df-1p 10141  df-plp 10142  df-mp 10143  df-ltp 10144  df-enr 10214  df-nr 10215  df-mr 10217  df-ltr 10218  df-0r 10219
This theorem is referenced by:  sqgt0sr  10265  axpre-mulgt0  10327
  Copyright terms: Public domain W3C validator