MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Visualization version   GIF version

Theorem supsr 11107
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supsr
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4347 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢𝐴)
2 ltrelsr 11063 . . . . . . . . . . . . 13 <R ⊆ (R × R)
32brel 5742 . . . . . . . . . . . 12 (𝑦 <R 𝑥 → (𝑦R𝑥R))
43simpld 496 . . . . . . . . . . 11 (𝑦 <R 𝑥𝑦R)
54ralimi 3084 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
6 dfss3 3971 . . . . . . . . . 10 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
75, 6sylibr 233 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
87sseld 3982 . . . . . . . 8 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
98rexlimivw 3152 . . . . . . 7 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
109impcom 409 . . . . . 6 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝑢R)
11 eleq1 2822 . . . . . . . . 9 (𝑢 = if(𝑢R, 𝑢, 1R) → (𝑢𝐴 ↔ if(𝑢R, 𝑢, 1R) ∈ 𝐴))
1211anbi1d 631 . . . . . . . 8 (𝑢 = if(𝑢R, 𝑢, 1R) → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ↔ (if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)))
1312imbi1d 342 . . . . . . 7 (𝑢 = if(𝑢R, 𝑢, 1R) → (((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))))
14 opeq1 4874 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ = ⟨𝑤, 1P⟩)
1514eceq1d 8742 . . . . . . . . . . 11 (𝑣 = 𝑤 → [⟨𝑣, 1P⟩] ~R = [⟨𝑤, 1P⟩] ~R )
1615oveq2d 7425 . . . . . . . . . 10 (𝑣 = 𝑤 → (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) = (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ))
1716eleq1d 2819 . . . . . . . . 9 (𝑣 = 𝑤 → ((if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴 ↔ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
1817cbvabv 2806 . . . . . . . 8 {𝑣 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
19 1sr 11076 . . . . . . . . 9 1RR
2019elimel 4598 . . . . . . . 8 if(𝑢R, 𝑢, 1R) ∈ R
2118, 20supsrlem 11106 . . . . . . 7 ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2213, 21dedth 4587 . . . . . 6 (𝑢R → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2310, 22mpcom 38 . . . . 5 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2423ex 414 . . . 4 (𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2524exlimiv 1934 . . 3 (∃𝑢 𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
261, 25sylbi 216 . 2 (𝐴 ≠ ∅ → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2726imp 408 1 ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2941  wral 3062  wrex 3071  wss 3949  c0 4323  ifcif 4529  cop 4635   class class class wbr 5149  (class class class)co 7409  [cec 8701  1Pc1p 10855   ~R cer 10859  Rcnr 10860  1Rc1r 10862   +R cplr 10864   <R cltr 10866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-mpq 10904  df-ltpq 10905  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-mq 10910  df-1nq 10911  df-rq 10912  df-ltnq 10913  df-np 10976  df-1p 10977  df-plp 10978  df-mp 10979  df-ltp 10980  df-enr 11050  df-nr 11051  df-plr 11052  df-mr 11053  df-ltr 11054  df-0r 11055  df-1r 11056  df-m1r 11057
This theorem is referenced by:  axpre-sup  11164
  Copyright terms: Public domain W3C validator