MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Visualization version   GIF version

Theorem supsr 11150
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supsr
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4359 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢𝐴)
2 ltrelsr 11106 . . . . . . . . . . . . 13 <R ⊆ (R × R)
32brel 5754 . . . . . . . . . . . 12 (𝑦 <R 𝑥 → (𝑦R𝑥R))
43simpld 494 . . . . . . . . . . 11 (𝑦 <R 𝑥𝑦R)
54ralimi 3081 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
6 dfss3 3984 . . . . . . . . . 10 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
75, 6sylibr 234 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
87sseld 3994 . . . . . . . 8 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
98rexlimivw 3149 . . . . . . 7 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
109impcom 407 . . . . . 6 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝑢R)
11 eleq1 2827 . . . . . . . . 9 (𝑢 = if(𝑢R, 𝑢, 1R) → (𝑢𝐴 ↔ if(𝑢R, 𝑢, 1R) ∈ 𝐴))
1211anbi1d 631 . . . . . . . 8 (𝑢 = if(𝑢R, 𝑢, 1R) → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ↔ (if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)))
1312imbi1d 341 . . . . . . 7 (𝑢 = if(𝑢R, 𝑢, 1R) → (((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))))
14 opeq1 4878 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ = ⟨𝑤, 1P⟩)
1514eceq1d 8784 . . . . . . . . . . 11 (𝑣 = 𝑤 → [⟨𝑣, 1P⟩] ~R = [⟨𝑤, 1P⟩] ~R )
1615oveq2d 7447 . . . . . . . . . 10 (𝑣 = 𝑤 → (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) = (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ))
1716eleq1d 2824 . . . . . . . . 9 (𝑣 = 𝑤 → ((if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴 ↔ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
1817cbvabv 2810 . . . . . . . 8 {𝑣 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
19 1sr 11119 . . . . . . . . 9 1RR
2019elimel 4600 . . . . . . . 8 if(𝑢R, 𝑢, 1R) ∈ R
2118, 20supsrlem 11149 . . . . . . 7 ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2213, 21dedth 4589 . . . . . 6 (𝑢R → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2310, 22mpcom 38 . . . . 5 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2423ex 412 . . . 4 (𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2524exlimiv 1928 . . 3 (∃𝑢 𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
261, 25sylbi 217 . 2 (𝐴 ≠ ∅ → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2726imp 406 1 ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339  ifcif 4531  cop 4637   class class class wbr 5148  (class class class)co 7431  [cec 8742  1Pc1p 10898   ~R cer 10902  Rcnr 10903  1Rc1r 10905   +R cplr 10907   <R cltr 10909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-ni 10910  df-pli 10911  df-mi 10912  df-lti 10913  df-plpq 10946  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-plq 10952  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019  df-1p 11020  df-plp 11021  df-mp 11022  df-ltp 11023  df-enr 11093  df-nr 11094  df-plr 11095  df-mr 11096  df-ltr 11097  df-0r 11098  df-1r 11099  df-m1r 11100
This theorem is referenced by:  axpre-sup  11207
  Copyright terms: Public domain W3C validator