Step | Hyp | Ref
| Expression |
1 | | n0 4345 |
. . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑢 𝑢 ∈ 𝐴) |
2 | | ltrelsr 11059 |
. . . . . . . . . . . . 13
⊢
<R ⊆ (R ×
R) |
3 | 2 | brel 5739 |
. . . . . . . . . . . 12
⊢ (𝑦 <R
𝑥 → (𝑦 ∈ R ∧
𝑥 ∈
R)) |
4 | 3 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝑦 <R
𝑥 → 𝑦 ∈ R) |
5 | 4 | ralimi 3083 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
6 | | dfss3 3969 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ R ↔
∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
7 | 5, 6 | sylibr 233 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
8 | 7 | sseld 3980 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 𝑦 <R 𝑥 → (𝑢 ∈ 𝐴 → 𝑢 ∈ R)) |
9 | 8 | rexlimivw 3151 |
. . . . . . 7
⊢
(∃𝑥 ∈
R ∀𝑦
∈ 𝐴 𝑦 <R 𝑥 → (𝑢 ∈ 𝐴 → 𝑢 ∈ R)) |
10 | 9 | impcom 408 |
. . . . . 6
⊢ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → 𝑢 ∈ R) |
11 | | eleq1 2821 |
. . . . . . . . 9
⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) → (𝑢 ∈ 𝐴 ↔ if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴)) |
12 | 11 | anbi1d 630 |
. . . . . . . 8
⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) → ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ↔ (if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥))) |
13 | 12 | imbi1d 341 |
. . . . . . 7
⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) →
(((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢 ∈ R, 𝑢, 1R)
∈ 𝐴 ∧ ∃𝑥 ∈ R
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))))) |
14 | | opeq1 4872 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ =
⟨𝑤,
1P⟩) |
15 | 14 | eceq1d 8738 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑤 → [⟨𝑣, 1P⟩]
~R = [⟨𝑤, 1P⟩]
~R ) |
16 | 15 | oveq2d 7421 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑤 → (if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑣, 1P⟩]
~R ) = (if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑤, 1P⟩]
~R )) |
17 | 16 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → ((if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑣, 1P⟩]
~R ) ∈ 𝐴 ↔ (if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑤, 1P⟩]
~R ) ∈ 𝐴)) |
18 | 17 | cbvabv 2805 |
. . . . . . . 8
⊢ {𝑣 ∣ (if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑣, 1P⟩]
~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢 ∈ R, 𝑢, 1R)
+R [⟨𝑤, 1P⟩]
~R ) ∈ 𝐴} |
19 | | 1sr 11072 |
. . . . . . . . 9
⊢
1R ∈ R |
20 | 19 | elimel 4596 |
. . . . . . . 8
⊢ if(𝑢 ∈ R, 𝑢, 1R)
∈ R |
21 | 18, 20 | supsrlem 11102 |
. . . . . . 7
⊢
((if(𝑢 ∈
R, 𝑢,
1R) ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
22 | 13, 21 | dedth 4585 |
. . . . . 6
⊢ (𝑢 ∈ R →
((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
23 | 10, 22 | mpcom 38 |
. . . . 5
⊢ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
24 | 23 | ex 413 |
. . . 4
⊢ (𝑢 ∈ 𝐴 → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
25 | 24 | exlimiv 1933 |
. . 3
⊢
(∃𝑢 𝑢 ∈ 𝐴 → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
26 | 1, 25 | sylbi 216 |
. 2
⊢ (𝐴 ≠ ∅ →
(∃𝑥 ∈
R ∀𝑦
∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
27 | 26 | imp 407 |
1
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R
∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |