MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Visualization version   GIF version

Theorem supsr 11181
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supsr
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4376 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢𝐴)
2 ltrelsr 11137 . . . . . . . . . . . . 13 <R ⊆ (R × R)
32brel 5765 . . . . . . . . . . . 12 (𝑦 <R 𝑥 → (𝑦R𝑥R))
43simpld 494 . . . . . . . . . . 11 (𝑦 <R 𝑥𝑦R)
54ralimi 3089 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
6 dfss3 3997 . . . . . . . . . 10 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
75, 6sylibr 234 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
87sseld 4007 . . . . . . . 8 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
98rexlimivw 3157 . . . . . . 7 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
109impcom 407 . . . . . 6 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝑢R)
11 eleq1 2832 . . . . . . . . 9 (𝑢 = if(𝑢R, 𝑢, 1R) → (𝑢𝐴 ↔ if(𝑢R, 𝑢, 1R) ∈ 𝐴))
1211anbi1d 630 . . . . . . . 8 (𝑢 = if(𝑢R, 𝑢, 1R) → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ↔ (if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)))
1312imbi1d 341 . . . . . . 7 (𝑢 = if(𝑢R, 𝑢, 1R) → (((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))))
14 opeq1 4897 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ = ⟨𝑤, 1P⟩)
1514eceq1d 8803 . . . . . . . . . . 11 (𝑣 = 𝑤 → [⟨𝑣, 1P⟩] ~R = [⟨𝑤, 1P⟩] ~R )
1615oveq2d 7464 . . . . . . . . . 10 (𝑣 = 𝑤 → (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) = (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ))
1716eleq1d 2829 . . . . . . . . 9 (𝑣 = 𝑤 → ((if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴 ↔ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
1817cbvabv 2815 . . . . . . . 8 {𝑣 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
19 1sr 11150 . . . . . . . . 9 1RR
2019elimel 4617 . . . . . . . 8 if(𝑢R, 𝑢, 1R) ∈ R
2118, 20supsrlem 11180 . . . . . . 7 ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2213, 21dedth 4606 . . . . . 6 (𝑢R → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2310, 22mpcom 38 . . . . 5 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2423ex 412 . . . 4 (𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2524exlimiv 1929 . . 3 (∃𝑢 𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
261, 25sylbi 217 . 2 (𝐴 ≠ ∅ → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2726imp 406 1 ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352  ifcif 4548  cop 4654   class class class wbr 5166  (class class class)co 7448  [cec 8761  1Pc1p 10929   ~R cer 10933  Rcnr 10934  1Rc1r 10936   +R cplr 10938   <R cltr 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-plr 11126  df-mr 11127  df-ltr 11128  df-0r 11129  df-1r 11130  df-m1r 11131
This theorem is referenced by:  axpre-sup  11238
  Copyright terms: Public domain W3C validator