MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Visualization version   GIF version

Theorem supsr 11065
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supsr
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢𝐴)
2 ltrelsr 11021 . . . . . . . . . . . . 13 <R ⊆ (R × R)
32brel 5703 . . . . . . . . . . . 12 (𝑦 <R 𝑥 → (𝑦R𝑥R))
43simpld 494 . . . . . . . . . . 11 (𝑦 <R 𝑥𝑦R)
54ralimi 3066 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
6 dfss3 3935 . . . . . . . . . 10 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
75, 6sylibr 234 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
87sseld 3945 . . . . . . . 8 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
98rexlimivw 3130 . . . . . . 7 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
109impcom 407 . . . . . 6 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝑢R)
11 eleq1 2816 . . . . . . . . 9 (𝑢 = if(𝑢R, 𝑢, 1R) → (𝑢𝐴 ↔ if(𝑢R, 𝑢, 1R) ∈ 𝐴))
1211anbi1d 631 . . . . . . . 8 (𝑢 = if(𝑢R, 𝑢, 1R) → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ↔ (if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)))
1312imbi1d 341 . . . . . . 7 (𝑢 = if(𝑢R, 𝑢, 1R) → (((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))))
14 opeq1 4837 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ = ⟨𝑤, 1P⟩)
1514eceq1d 8711 . . . . . . . . . . 11 (𝑣 = 𝑤 → [⟨𝑣, 1P⟩] ~R = [⟨𝑤, 1P⟩] ~R )
1615oveq2d 7403 . . . . . . . . . 10 (𝑣 = 𝑤 → (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) = (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ))
1716eleq1d 2813 . . . . . . . . 9 (𝑣 = 𝑤 → ((if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴 ↔ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
1817cbvabv 2799 . . . . . . . 8 {𝑣 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
19 1sr 11034 . . . . . . . . 9 1RR
2019elimel 4558 . . . . . . . 8 if(𝑢R, 𝑢, 1R) ∈ R
2118, 20supsrlem 11064 . . . . . . 7 ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2213, 21dedth 4547 . . . . . 6 (𝑢R → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2310, 22mpcom 38 . . . . 5 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2423ex 412 . . . 4 (𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2524exlimiv 1930 . . 3 (∃𝑢 𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
261, 25sylbi 217 . 2 (𝐴 ≠ ∅ → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2726imp 406 1 ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  wss 3914  c0 4296  ifcif 4488  cop 4595   class class class wbr 5107  (class class class)co 7387  [cec 8669  1Pc1p 10813   ~R cer 10817  Rcnr 10818  1Rc1r 10820   +R cplr 10822   <R cltr 10824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-1p 10935  df-plp 10936  df-mp 10937  df-ltp 10938  df-enr 11008  df-nr 11009  df-plr 11010  df-mr 11011  df-ltr 11012  df-0r 11013  df-1r 11014  df-m1r 11015
This theorem is referenced by:  axpre-sup  11122
  Copyright terms: Public domain W3C validator