Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > supsr | Structured version Visualization version GIF version |
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
supsr | ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4285 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢 ∈ 𝐴) | |
2 | ltrelsr 10808 | . . . . . . . . . . . . 13 ⊢ <R ⊆ (R × R) | |
3 | 2 | brel 5651 | . . . . . . . . . . . 12 ⊢ (𝑦 <R 𝑥 → (𝑦 ∈ R ∧ 𝑥 ∈ R)) |
4 | 3 | simpld 494 | . . . . . . . . . . 11 ⊢ (𝑦 <R 𝑥 → 𝑦 ∈ R) |
5 | 4 | ralimi 3088 | . . . . . . . . . 10 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ R) |
6 | dfss3 3913 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ R ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ R) | |
7 | 5, 6 | sylibr 233 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R) |
8 | 7 | sseld 3924 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → (𝑢 ∈ 𝐴 → 𝑢 ∈ R)) |
9 | 8 | rexlimivw 3212 | . . . . . . 7 ⊢ (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → (𝑢 ∈ 𝐴 → 𝑢 ∈ R)) |
10 | 9 | impcom 407 | . . . . . 6 ⊢ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → 𝑢 ∈ R) |
11 | eleq1 2827 | . . . . . . . . 9 ⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) → (𝑢 ∈ 𝐴 ↔ if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴)) | |
12 | 11 | anbi1d 629 | . . . . . . . 8 ⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) → ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) ↔ (if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥))) |
13 | 12 | imbi1d 341 | . . . . . . 7 ⊢ (𝑢 = if(𝑢 ∈ R, 𝑢, 1R) → (((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))))) |
14 | opeq1 4809 | . . . . . . . . . . . 12 ⊢ (𝑣 = 𝑤 → 〈𝑣, 1P〉 = 〈𝑤, 1P〉) | |
15 | 14 | eceq1d 8511 | . . . . . . . . . . 11 ⊢ (𝑣 = 𝑤 → [〈𝑣, 1P〉] ~R = [〈𝑤, 1P〉] ~R ) |
16 | 15 | oveq2d 7284 | . . . . . . . . . 10 ⊢ (𝑣 = 𝑤 → (if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑣, 1P〉] ~R ) = (if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑤, 1P〉] ~R )) |
17 | 16 | eleq1d 2824 | . . . . . . . . 9 ⊢ (𝑣 = 𝑤 → ((if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑣, 1P〉] ~R ) ∈ 𝐴 ↔ (if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴)) |
18 | 17 | cbvabv 2812 | . . . . . . . 8 ⊢ {𝑣 ∣ (if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑣, 1P〉] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢 ∈ R, 𝑢, 1R) +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} |
19 | 1sr 10821 | . . . . . . . . 9 ⊢ 1R ∈ R | |
20 | 19 | elimel 4533 | . . . . . . . 8 ⊢ if(𝑢 ∈ R, 𝑢, 1R) ∈ R |
21 | 18, 20 | supsrlem 10851 | . . . . . . 7 ⊢ ((if(𝑢 ∈ R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
22 | 13, 21 | dedth 4522 | . . . . . 6 ⊢ (𝑢 ∈ R → ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
23 | 10, 22 | mpcom 38 | . . . . 5 ⊢ ((𝑢 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
24 | 23 | ex 412 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
25 | 24 | exlimiv 1936 | . . 3 ⊢ (∃𝑢 𝑢 ∈ 𝐴 → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
26 | 1, 25 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → (∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
27 | 26 | imp 406 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ⊆ wss 3891 ∅c0 4261 ifcif 4464 〈cop 4572 class class class wbr 5078 (class class class)co 7268 [cec 8470 1Pc1p 10600 ~R cer 10604 Rcnr 10605 1Rc1r 10607 +R cplr 10609 <R cltr 10611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-omul 8286 df-er 8472 df-ec 8474 df-qs 8478 df-ni 10612 df-pli 10613 df-mi 10614 df-lti 10615 df-plpq 10648 df-mpq 10649 df-ltpq 10650 df-enq 10651 df-nq 10652 df-erq 10653 df-plq 10654 df-mq 10655 df-1nq 10656 df-rq 10657 df-ltnq 10658 df-np 10721 df-1p 10722 df-plp 10723 df-mp 10724 df-ltp 10725 df-enr 10795 df-nr 10796 df-plr 10797 df-mr 10798 df-ltr 10799 df-0r 10800 df-1r 10801 df-m1r 10802 |
This theorem is referenced by: axpre-sup 10909 |
Copyright terms: Public domain | W3C validator |