MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsrlem Structured version   Visualization version   GIF version

Theorem recexsrlem 10528
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsrlem (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsrlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 10493 . . . 4 <R ⊆ (R × R)
21brel 5620 . . 3 (0R <R 𝐴 → (0RR𝐴R))
32simprd 498 . 2 (0R <R 𝐴𝐴R)
4 df-nr 10481 . . 3 R = ((P × P) / ~R )
5 breq2 5073 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (0R <R [⟨𝑦, 𝑧⟩] ~R ↔ 0R <R 𝐴))
6 oveq1 7166 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = (𝐴 ·R 𝑥))
76eqeq1d 2826 . . . . 5 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ (𝐴 ·R 𝑥) = 1R))
87rexbidv 3300 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ ∃𝑥R (𝐴 ·R 𝑥) = 1R))
95, 8imbi12d 347 . . 3 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ((0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R) ↔ (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)))
10 gt0srpr 10503 . . . . 5 (0R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P 𝑦)
11 ltexpri 10468 . . . . 5 (𝑧<P 𝑦 → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
1210, 11sylbi 219 . . . 4 (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
13 recexpr 10476 . . . . . 6 (𝑤P → ∃𝑣P (𝑤 ·P 𝑣) = 1P)
14 1pr 10440 . . . . . . . . . . . 12 1PP
15 addclpr 10443 . . . . . . . . . . . 12 ((𝑣P ∧ 1PP) → (𝑣 +P 1P) ∈ P)
1614, 15mpan2 689 . . . . . . . . . . 11 (𝑣P → (𝑣 +P 1P) ∈ P)
17 enrex 10492 . . . . . . . . . . . 12 ~R ∈ V
1817, 4ecopqsi 8357 . . . . . . . . . . 11 (((𝑣 +P 1P) ∈ P ∧ 1PP) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
1916, 14, 18sylancl 588 . . . . . . . . . 10 (𝑣P → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2019ad2antlr 725 . . . . . . . . 9 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2116, 14jctir 523 . . . . . . . . . . . . . 14 (𝑣P → ((𝑣 +P 1P) ∈ P ∧ 1PP))
2221anim2i 618 . . . . . . . . . . . . 13 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
2322adantr 483 . . . . . . . . . . . 12 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
24 mulsrpr 10501 . . . . . . . . . . . 12 (((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
2523, 24syl 17 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
26 oveq1 7166 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 +P 𝑤) = 𝑦 → ((𝑧 +P 𝑤) ·P 𝑣) = (𝑦 ·P 𝑣))
2726eqcomd 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑧 +P 𝑤) = 𝑦 → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤) ·P 𝑣))
28 vex 3500 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
29 vex 3500 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
30 vex 3500 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
31 mulcompr 10448 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ·P 𝑓) = (𝑓 ·P 𝑢)
32 distrpr 10453 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ·P (𝑓 +P 𝑥)) = ((𝑢 ·P 𝑓) +P (𝑢 ·P 𝑥))
3328, 29, 30, 31, 32caovdir 7385 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣))
34 oveq2 7167 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ·P 𝑣) = 1P → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣)) = ((𝑧 ·P 𝑣) +P 1P))
3533, 34syl5eq 2871 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
3627, 35sylan9eqr 2881 . . . . . . . . . . . . . . . . . 18 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (𝑦 ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
3736oveq1d 7174 . . . . . . . . . . . . . . . . 17 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
38 ovex 7192 . . . . . . . . . . . . . . . . . 18 (𝑧 ·P 𝑣) ∈ V
3914elexi 3516 . . . . . . . . . . . . . . . . . 18 1P ∈ V
40 ovex 7192 . . . . . . . . . . . . . . . . . 18 ((𝑦 ·P 1P) +P (𝑧 ·P 1P)) ∈ V
41 addcompr 10446 . . . . . . . . . . . . . . . . . 18 (𝑢 +P 𝑓) = (𝑓 +P 𝑢)
42 addasspr 10447 . . . . . . . . . . . . . . . . . 18 ((𝑢 +P 𝑓) +P 𝑥) = (𝑢 +P (𝑓 +P 𝑥))
4338, 39, 40, 41, 42caov32 7378 . . . . . . . . . . . . . . . . 17 (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P)
4437, 43syl6eq 2875 . . . . . . . . . . . . . . . 16 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
4544oveq1d 7174 . . . . . . . . . . . . . . 15 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P))
46 addasspr 10447 . . . . . . . . . . . . . . 15 ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P))
4745, 46syl6eq 2875 . . . . . . . . . . . . . 14 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
48 distrpr 10453 . . . . . . . . . . . . . . . . 17 (𝑦 ·P (𝑣 +P 1P)) = ((𝑦 ·P 𝑣) +P (𝑦 ·P 1P))
4948oveq1i 7169 . . . . . . . . . . . . . . . 16 ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P))
50 addasspr 10447 . . . . . . . . . . . . . . . 16 (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5149, 50eqtri 2847 . . . . . . . . . . . . . . 15 ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5251oveq1i 7169 . . . . . . . . . . . . . 14 (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P)
53 distrpr 10453 . . . . . . . . . . . . . . . . 17 (𝑧 ·P (𝑣 +P 1P)) = ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))
5453oveq2i 7170 . . . . . . . . . . . . . . . 16 ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P)))
55 ovex 7192 . . . . . . . . . . . . . . . . 17 (𝑦 ·P 1P) ∈ V
56 ovex 7192 . . . . . . . . . . . . . . . . 17 (𝑧 ·P 1P) ∈ V
5755, 38, 56, 41, 42caov12 7379 . . . . . . . . . . . . . . . 16 ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5854, 57eqtri 2847 . . . . . . . . . . . . . . 15 ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5958oveq1i 7169 . . . . . . . . . . . . . 14 (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P))
6047, 52, 593eqtr4g 2884 . . . . . . . . . . . . 13 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)))
61 mulclpr 10445 . . . . . . . . . . . . . . . . . 18 ((𝑦P ∧ (𝑣 +P 1P) ∈ P) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
6216, 61sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑦P𝑣P) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
63 mulclpr 10445 . . . . . . . . . . . . . . . . . 18 ((𝑧P ∧ 1PP) → (𝑧 ·P 1P) ∈ P)
6414, 63mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑧P → (𝑧 ·P 1P) ∈ P)
65 addclpr 10443 . . . . . . . . . . . . . . . . 17 (((𝑦 ·P (𝑣 +P 1P)) ∈ P ∧ (𝑧 ·P 1P) ∈ P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
6662, 64, 65syl2an 597 . . . . . . . . . . . . . . . 16 (((𝑦P𝑣P) ∧ 𝑧P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
6766an32s 650 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
68 mulclpr 10445 . . . . . . . . . . . . . . . . . 18 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
6914, 68mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑦P → (𝑦 ·P 1P) ∈ P)
70 mulclpr 10445 . . . . . . . . . . . . . . . . . 18 ((𝑧P ∧ (𝑣 +P 1P) ∈ P) → (𝑧 ·P (𝑣 +P 1P)) ∈ P)
7116, 70sylan2 594 . . . . . . . . . . . . . . . . 17 ((𝑧P𝑣P) → (𝑧 ·P (𝑣 +P 1P)) ∈ P)
72 addclpr 10443 . . . . . . . . . . . . . . . . 17 (((𝑦 ·P 1P) ∈ P ∧ (𝑧 ·P (𝑣 +P 1P)) ∈ P) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7369, 71, 72syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑦P ∧ (𝑧P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7473anassrs 470 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7567, 74jca 514 . . . . . . . . . . . . . 14 (((𝑦P𝑧P) ∧ 𝑣P) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P))
76 addclpr 10443 . . . . . . . . . . . . . . . 16 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
7714, 14, 76mp2an 690 . . . . . . . . . . . . . . 15 (1P +P 1P) ∈ P
7877, 14pm3.2i 473 . . . . . . . . . . . . . 14 ((1P +P 1P) ∈ P ∧ 1PP)
79 enreceq 10491 . . . . . . . . . . . . . 14 (((((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
8075, 78, 79sylancl 588 . . . . . . . . . . . . 13 (((𝑦P𝑧P) ∧ 𝑣P) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
8160, 80syl5ibr 248 . . . . . . . . . . . 12 (((𝑦P𝑧P) ∧ 𝑣P) → (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ))
8281imp 409 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
8325, 82eqtrd 2859 . . . . . . . . . 10 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R )
84 df-1r 10486 . . . . . . . . . 10 1R = [⟨(1P +P 1P), 1P⟩] ~R
8583, 84syl6eqr 2877 . . . . . . . . 9 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R)
86 oveq2 7167 . . . . . . . . . . 11 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ))
8786eqeq1d 2826 . . . . . . . . . 10 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R))
8887rspcev 3626 . . . . . . . . 9 (([⟨(𝑣 +P 1P), 1P⟩] ~RR ∧ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R) → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)
8920, 85, 88syl2anc 586 . . . . . . . 8 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)
9089exp43 439 . . . . . . 7 ((𝑦P𝑧P) → (𝑣P → ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))))
9190rexlimdv 3286 . . . . . 6 ((𝑦P𝑧P) → (∃𝑣P (𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
9213, 91syl5 34 . . . . 5 ((𝑦P𝑧P) → (𝑤P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
9392rexlimdv 3286 . . . 4 ((𝑦P𝑧P) → (∃𝑤P (𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
9412, 93syl5 34 . . 3 ((𝑦P𝑧P) → (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
954, 9, 94ecoptocl 8390 . 2 (𝐴R → (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
963, 95mpcom 38 1 (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  cop 4576   class class class wbr 5069  (class class class)co 7159  [cec 8290  Pcnp 10284  1Pc1p 10285   +P cpp 10286   ·P cmp 10287  <P cltp 10288   ~R cer 10289  Rcnr 10290  0Rc0r 10291  1Rc1r 10292   ·R cmr 10295   <R cltr 10296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-ec 8294  df-qs 8298  df-ni 10297  df-pli 10298  df-mi 10299  df-lti 10300  df-plpq 10333  df-mpq 10334  df-ltpq 10335  df-enq 10336  df-nq 10337  df-erq 10338  df-plq 10339  df-mq 10340  df-1nq 10341  df-rq 10342  df-ltnq 10343  df-np 10406  df-1p 10407  df-plp 10408  df-mp 10409  df-ltp 10410  df-enr 10480  df-nr 10481  df-mr 10483  df-ltr 10484  df-0r 10485  df-1r 10486
This theorem is referenced by:  recexsr  10532
  Copyright terms: Public domain W3C validator