MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recexsrlem Structured version   Visualization version   GIF version

Theorem recexsrlem 10859
Description: The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
recexsrlem (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexsrlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 10824 . . . 4 <R ⊆ (R × R)
21brel 5652 . . 3 (0R <R 𝐴 → (0RR𝐴R))
32simprd 496 . 2 (0R <R 𝐴𝐴R)
4 df-nr 10812 . . 3 R = ((P × P) / ~R )
5 breq2 5078 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (0R <R [⟨𝑦, 𝑧⟩] ~R ↔ 0R <R 𝐴))
6 oveq1 7282 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = (𝐴 ·R 𝑥))
76eqeq1d 2740 . . . . 5 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ (𝐴 ·R 𝑥) = 1R))
87rexbidv 3226 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ ∃𝑥R (𝐴 ·R 𝑥) = 1R))
95, 8imbi12d 345 . . 3 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ((0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R) ↔ (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)))
10 gt0srpr 10834 . . . . 5 (0R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P 𝑦)
11 ltexpri 10799 . . . . 5 (𝑧<P 𝑦 → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
1210, 11sylbi 216 . . . 4 (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
13 recexpr 10807 . . . . . 6 (𝑤P → ∃𝑣P (𝑤 ·P 𝑣) = 1P)
14 1pr 10771 . . . . . . . . . . . 12 1PP
15 addclpr 10774 . . . . . . . . . . . 12 ((𝑣P ∧ 1PP) → (𝑣 +P 1P) ∈ P)
1614, 15mpan2 688 . . . . . . . . . . 11 (𝑣P → (𝑣 +P 1P) ∈ P)
17 enrex 10823 . . . . . . . . . . . 12 ~R ∈ V
1817, 4ecopqsi 8563 . . . . . . . . . . 11 (((𝑣 +P 1P) ∈ P ∧ 1PP) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
1916, 14, 18sylancl 586 . . . . . . . . . 10 (𝑣P → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2019ad2antlr 724 . . . . . . . . 9 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2116, 14jctir 521 . . . . . . . . . . . . . 14 (𝑣P → ((𝑣 +P 1P) ∈ P ∧ 1PP))
2221anim2i 617 . . . . . . . . . . . . 13 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
2322adantr 481 . . . . . . . . . . . 12 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
24 mulsrpr 10832 . . . . . . . . . . . 12 (((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
2523, 24syl 17 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
26 oveq1 7282 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 +P 𝑤) = 𝑦 → ((𝑧 +P 𝑤) ·P 𝑣) = (𝑦 ·P 𝑣))
2726eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 ((𝑧 +P 𝑤) = 𝑦 → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤) ·P 𝑣))
28 vex 3436 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
29 vex 3436 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
30 vex 3436 . . . . . . . . . . . . . . . . . . . . 21 𝑣 ∈ V
31 mulcompr 10779 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ·P 𝑓) = (𝑓 ·P 𝑢)
32 distrpr 10784 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ·P (𝑓 +P 𝑥)) = ((𝑢 ·P 𝑓) +P (𝑢 ·P 𝑥))
3328, 29, 30, 31, 32caovdir 7506 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣))
34 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ·P 𝑣) = 1P → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣)) = ((𝑧 ·P 𝑣) +P 1P))
3533, 34eqtrid 2790 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
3627, 35sylan9eqr 2800 . . . . . . . . . . . . . . . . . 18 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (𝑦 ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
3736oveq1d 7290 . . . . . . . . . . . . . . . . 17 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
38 ovex 7308 . . . . . . . . . . . . . . . . . 18 (𝑧 ·P 𝑣) ∈ V
3914elexi 3451 . . . . . . . . . . . . . . . . . 18 1P ∈ V
40 ovex 7308 . . . . . . . . . . . . . . . . . 18 ((𝑦 ·P 1P) +P (𝑧 ·P 1P)) ∈ V
41 addcompr 10777 . . . . . . . . . . . . . . . . . 18 (𝑢 +P 𝑓) = (𝑓 +P 𝑢)
42 addasspr 10778 . . . . . . . . . . . . . . . . . 18 ((𝑢 +P 𝑓) +P 𝑥) = (𝑢 +P (𝑓 +P 𝑥))
4338, 39, 40, 41, 42caov32 7499 . . . . . . . . . . . . . . . . 17 (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P)
4437, 43eqtrdi 2794 . . . . . . . . . . . . . . . 16 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
4544oveq1d 7290 . . . . . . . . . . . . . . 15 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P))
46 addasspr 10778 . . . . . . . . . . . . . . 15 ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P))
4745, 46eqtrdi 2794 . . . . . . . . . . . . . 14 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
48 distrpr 10784 . . . . . . . . . . . . . . . . 17 (𝑦 ·P (𝑣 +P 1P)) = ((𝑦 ·P 𝑣) +P (𝑦 ·P 1P))
4948oveq1i 7285 . . . . . . . . . . . . . . . 16 ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P))
50 addasspr 10778 . . . . . . . . . . . . . . . 16 (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5149, 50eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5251oveq1i 7285 . . . . . . . . . . . . . 14 (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P)
53 distrpr 10784 . . . . . . . . . . . . . . . . 17 (𝑧 ·P (𝑣 +P 1P)) = ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))
5453oveq2i 7286 . . . . . . . . . . . . . . . 16 ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P)))
55 ovex 7308 . . . . . . . . . . . . . . . . 17 (𝑦 ·P 1P) ∈ V
56 ovex 7308 . . . . . . . . . . . . . . . . 17 (𝑧 ·P 1P) ∈ V
5755, 38, 56, 41, 42caov12 7500 . . . . . . . . . . . . . . . 16 ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5854, 57eqtri 2766 . . . . . . . . . . . . . . 15 ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P)))
5958oveq1i 7285 . . . . . . . . . . . . . 14 (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P))
6047, 52, 593eqtr4g 2803 . . . . . . . . . . . . 13 (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)))
61 mulclpr 10776 . . . . . . . . . . . . . . . . . 18 ((𝑦P ∧ (𝑣 +P 1P) ∈ P) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
6216, 61sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑦P𝑣P) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
63 mulclpr 10776 . . . . . . . . . . . . . . . . . 18 ((𝑧P ∧ 1PP) → (𝑧 ·P 1P) ∈ P)
6414, 63mpan2 688 . . . . . . . . . . . . . . . . 17 (𝑧P → (𝑧 ·P 1P) ∈ P)
65 addclpr 10774 . . . . . . . . . . . . . . . . 17 (((𝑦 ·P (𝑣 +P 1P)) ∈ P ∧ (𝑧 ·P 1P) ∈ P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
6662, 64, 65syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑦P𝑣P) ∧ 𝑧P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
6766an32s 649 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
68 mulclpr 10776 . . . . . . . . . . . . . . . . . 18 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
6914, 68mpan2 688 . . . . . . . . . . . . . . . . 17 (𝑦P → (𝑦 ·P 1P) ∈ P)
70 mulclpr 10776 . . . . . . . . . . . . . . . . . 18 ((𝑧P ∧ (𝑣 +P 1P) ∈ P) → (𝑧 ·P (𝑣 +P 1P)) ∈ P)
7116, 70sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑧P𝑣P) → (𝑧 ·P (𝑣 +P 1P)) ∈ P)
72 addclpr 10774 . . . . . . . . . . . . . . . . 17 (((𝑦 ·P 1P) ∈ P ∧ (𝑧 ·P (𝑣 +P 1P)) ∈ P) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7369, 71, 72syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑦P ∧ (𝑧P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7473anassrs 468 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
7567, 74jca 512 . . . . . . . . . . . . . 14 (((𝑦P𝑧P) ∧ 𝑣P) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P))
76 addclpr 10774 . . . . . . . . . . . . . . . 16 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
7714, 14, 76mp2an 689 . . . . . . . . . . . . . . 15 (1P +P 1P) ∈ P
7877, 14pm3.2i 471 . . . . . . . . . . . . . 14 ((1P +P 1P) ∈ P ∧ 1PP)
79 enreceq 10822 . . . . . . . . . . . . . 14 (((((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
8075, 78, 79sylancl 586 . . . . . . . . . . . . 13 (((𝑦P𝑧P) ∧ 𝑣P) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
8160, 80syl5ibr 245 . . . . . . . . . . . 12 (((𝑦P𝑧P) ∧ 𝑣P) → (((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦) → [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ))
8281imp 407 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
8325, 82eqtrd 2778 . . . . . . . . . 10 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R )
84 df-1r 10817 . . . . . . . . . 10 1R = [⟨(1P +P 1P), 1P⟩] ~R
8583, 84eqtr4di 2796 . . . . . . . . 9 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R)
86 oveq2 7283 . . . . . . . . . . 11 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ))
8786eqeq1d 2740 . . . . . . . . . 10 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R))
8887rspcev 3561 . . . . . . . . 9 (([⟨(𝑣 +P 1P), 1P⟩] ~RR ∧ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R) → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)
8920, 85, 88syl2anc 584 . . . . . . . 8 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)
9089exp43 437 . . . . . . 7 ((𝑦P𝑧P) → (𝑣P → ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))))
9190rexlimdv 3212 . . . . . 6 ((𝑦P𝑧P) → (∃𝑣P (𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
9213, 91syl5 34 . . . . 5 ((𝑦P𝑧P) → (𝑤P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
9392rexlimdv 3212 . . . 4 ((𝑦P𝑧P) → (∃𝑤P (𝑧 +P 𝑤) = 𝑦 → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
9412, 93syl5 34 . . 3 ((𝑦P𝑧P) → (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
954, 9, 94ecoptocl 8596 . 2 (𝐴R → (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R))
963, 95mpcom 38 1 (0R <R 𝐴 → ∃𝑥R (𝐴 ·R 𝑥) = 1R)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cop 4567   class class class wbr 5074  (class class class)co 7275  [cec 8496  Pcnp 10615  1Pc1p 10616   +P cpp 10617   ·P cmp 10618  <P cltp 10619   ~R cer 10620  Rcnr 10621  0Rc0r 10622  1Rc1r 10623   ·R cmr 10626   <R cltr 10627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-1p 10738  df-plp 10739  df-mp 10740  df-ltp 10741  df-enr 10811  df-nr 10812  df-mr 10814  df-ltr 10815  df-0r 10816  df-1r 10817
This theorem is referenced by:  recexsr  10863
  Copyright terms: Public domain W3C validator