Step | Hyp | Ref
| Expression |
1 | | ltrelsr 10824 |
. . . 4
⊢
<R ⊆ (R ×
R) |
2 | 1 | brel 5652 |
. . 3
⊢
(0R <R 𝐴 →
(0R ∈ R ∧ 𝐴 ∈ R)) |
3 | 2 | simprd 496 |
. 2
⊢
(0R <R 𝐴 → 𝐴 ∈ R) |
4 | | df-nr 10812 |
. . 3
⊢
R = ((P × P) /
~R ) |
5 | | breq2 5078 |
. . . 4
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (0R
<R [〈𝑦, 𝑧〉] ~R ↔
0R <R 𝐴)) |
6 | | oveq1 7282 |
. . . . . 6
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = (𝐴 ·R 𝑥)) |
7 | 6 | eqeq1d 2740 |
. . . . 5
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R ↔ (𝐴
·R 𝑥) =
1R)) |
8 | 7 | rexbidv 3226 |
. . . 4
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R ↔
∃𝑥 ∈
R (𝐴
·R 𝑥) =
1R)) |
9 | 5, 8 | imbi12d 345 |
. . 3
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → ((0R
<R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
R ([〈𝑦,
𝑧〉]
~R ·R 𝑥) = 1R)
↔ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴
·R 𝑥) =
1R))) |
10 | | gt0srpr 10834 |
. . . . 5
⊢
(0R <R [〈𝑦, 𝑧〉] ~R ↔
𝑧<P 𝑦) |
11 | | ltexpri 10799 |
. . . . 5
⊢ (𝑧<P
𝑦 → ∃𝑤 ∈ P (𝑧 +P
𝑤) = 𝑦) |
12 | 10, 11 | sylbi 216 |
. . . 4
⊢
(0R <R [〈𝑦, 𝑧〉] ~R →
∃𝑤 ∈
P (𝑧
+P 𝑤) = 𝑦) |
13 | | recexpr 10807 |
. . . . . 6
⊢ (𝑤 ∈ P →
∃𝑣 ∈
P (𝑤
·P 𝑣) =
1P) |
14 | | 1pr 10771 |
. . . . . . . . . . . 12
⊢
1P ∈ P |
15 | | addclpr 10774 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ P ∧
1P ∈ P) → (𝑣 +P
1P) ∈ P) |
16 | 14, 15 | mpan2 688 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ P →
(𝑣
+P 1P) ∈
P) |
17 | | enrex 10823 |
. . . . . . . . . . . 12
⊢
~R ∈ V |
18 | 17, 4 | ecopqsi 8563 |
. . . . . . . . . . 11
⊢ (((𝑣 +P
1P) ∈ P ∧
1P ∈ P) → [〈(𝑣 +P
1P), 1P〉]
~R ∈ R) |
19 | 16, 14, 18 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝑣 ∈ P →
[〈(𝑣
+P 1P),
1P〉] ~R ∈
R) |
20 | 19 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → [〈(𝑣 +P
1P), 1P〉]
~R ∈ R) |
21 | 16, 14 | jctir 521 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ P →
((𝑣
+P 1P) ∈ P
∧ 1P ∈ P)) |
22 | 21 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → ((𝑦
∈ P ∧ 𝑧 ∈ P) ∧ ((𝑣 +P
1P) ∈ P ∧
1P ∈ P))) |
23 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ((𝑦 ∈ P ∧ 𝑧 ∈ P) ∧
((𝑣
+P 1P) ∈ P
∧ 1P ∈ P))) |
24 | | mulsrpr 10832 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ ((𝑣
+P 1P) ∈ P
∧ 1P ∈ P)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R
) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R
) |
26 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 +P
𝑤) = 𝑦 → ((𝑧 +P 𝑤)
·P 𝑣) = (𝑦 ·P 𝑣)) |
27 | 26 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 +P
𝑤) = 𝑦 → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤)
·P 𝑣)) |
28 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
29 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑤 ∈ V |
30 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑣 ∈ V |
31 | | mulcompr 10779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢
·P 𝑓) = (𝑓 ·P 𝑢) |
32 | | distrpr 10784 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢
·P (𝑓 +P 𝑥)) = ((𝑢 ·P 𝑓) +P
(𝑢
·P 𝑥)) |
33 | 28, 29, 30, 31, 32 | caovdir 7506 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 +P
𝑤)
·P 𝑣) = ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑣)) |
34 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤
·P 𝑣) = 1P →
((𝑧
·P 𝑣) +P (𝑤
·P 𝑣)) = ((𝑧 ·P 𝑣) +P
1P)) |
35 | 33, 34 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤
·P 𝑣) = 1P →
((𝑧
+P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P
1P)) |
36 | 27, 35 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → (𝑦 ·P 𝑣) = ((𝑧 ·P 𝑣) +P
1P)) |
37 | 36 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
1P) +P ((𝑦 ·P
1P) +P (𝑧 ·P
1P)))) |
38 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧
·P 𝑣) ∈ V |
39 | 14 | elexi 3451 |
. . . . . . . . . . . . . . . . . 18
⊢
1P ∈ V |
40 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦
·P 1P)
+P (𝑧 ·P
1P)) ∈ V |
41 | | addcompr 10777 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 +P
𝑓) = (𝑓 +P 𝑢) |
42 | | addasspr 10778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 +P
𝑓)
+P 𝑥) = (𝑢 +P (𝑓 +P
𝑥)) |
43 | 38, 39, 40, 41, 42 | caov32 7499 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧
·P 𝑣) +P
1P) +P ((𝑦 ·P
1P) +P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) |
44 | 37, 43 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
45 | 44 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) = ((((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) +P
1P)) |
46 | | addasspr 10778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) +P
1P) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P)) |
47 | 45, 46 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
48 | | distrpr 10784 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦
·P (𝑣 +P
1P)) = ((𝑦 ·P 𝑣) +P
(𝑦
·P
1P)) |
49 | 48 | oveq1i 7285 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) = (((𝑦 ·P 𝑣) +P
(𝑦
·P 1P))
+P (𝑧 ·P
1P)) |
50 | | addasspr 10778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦
·P 𝑣) +P (𝑦
·P 1P))
+P (𝑧 ·P
1P)) = ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) |
51 | 49, 50 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) = ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) |
52 | 51 | oveq1i 7285 |
. . . . . . . . . . . . . 14
⊢ (((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) |
53 | | distrpr 10784 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧
·P (𝑣 +P
1P)) = ((𝑧 ·P 𝑣) +P
(𝑧
·P
1P)) |
54 | 53 | oveq2i 7286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦
·P 1P)
+P (𝑧 ·P (𝑣 +P
1P))) = ((𝑦 ·P
1P) +P ((𝑧 ·P 𝑣) +P
(𝑧
·P
1P))) |
55 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦
·P 1P) ∈
V |
56 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧
·P 1P) ∈
V |
57 | 55, 38, 56, 41, 42 | caov12 7500 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦
·P 1P)
+P ((𝑧 ·P 𝑣) +P
(𝑧
·P 1P))) = ((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P))) |
58 | 54, 57 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦
·P 1P)
+P (𝑧 ·P (𝑣 +P
1P))) = ((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) |
59 | 58 | oveq1i 7285 |
. . . . . . . . . . . . . 14
⊢ (((𝑦
·P 1P)
+P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P)) |
60 | 47, 52, 59 | 3eqtr4g 2803 |
. . . . . . . . . . . . 13
⊢ (((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦) → (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P))) |
61 | | mulclpr 10776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ P ∧
(𝑣
+P 1P) ∈
P) → (𝑦
·P (𝑣 +P
1P)) ∈ P) |
62 | 16, 61 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ P ∧
𝑣 ∈ P)
→ (𝑦
·P (𝑣 +P
1P)) ∈ P) |
63 | | mulclpr 10776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ P ∧
1P ∈ P) → (𝑧 ·P
1P) ∈ P) |
64 | 14, 63 | mpan2 688 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ P →
(𝑧
·P 1P) ∈
P) |
65 | | addclpr 10774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦
·P (𝑣 +P
1P)) ∈ P ∧ (𝑧 ·P
1P) ∈ P) → ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P) |
66 | 62, 64, 65 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ P ∧
𝑣 ∈ P)
∧ 𝑧 ∈
P) → ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P) |
67 | 66 | an32s 649 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P) |
68 | | mulclpr 10776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) |
69 | 14, 68 | mpan2 688 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ P →
(𝑦
·P 1P) ∈
P) |
70 | | mulclpr 10776 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ P ∧
(𝑣
+P 1P) ∈
P) → (𝑧
·P (𝑣 +P
1P)) ∈ P) |
71 | 16, 70 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ P ∧
𝑣 ∈ P)
→ (𝑧
·P (𝑣 +P
1P)) ∈ P) |
72 | | addclpr 10774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦
·P 1P) ∈
P ∧ (𝑧
·P (𝑣 +P
1P)) ∈ P) → ((𝑦
·P 1P)
+P (𝑧 ·P (𝑣 +P
1P))) ∈ P) |
73 | 69, 71, 72 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ P ∧
(𝑧 ∈ P
∧ 𝑣 ∈
P)) → ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) ∈ P) |
74 | 73 | anassrs 468 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → ((𝑦
·P 1P)
+P (𝑧 ·P (𝑣 +P
1P))) ∈ P) |
75 | 67, 74 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P ∧ ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) ∈ P)) |
76 | | addclpr 10774 |
. . . . . . . . . . . . . . . 16
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
77 | 14, 14, 76 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢
(1P +P
1P) ∈ P |
78 | 77, 14 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢
((1P +P
1P) ∈ P ∧
1P ∈ P) |
79 | | enreceq 10822 |
. . . . . . . . . . . . . 14
⊢
(((((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P ∧ ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) ∈ P) ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)))) |
80 | 75, 78, 79 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → ([〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)))) |
81 | 60, 80 | syl5ibr 245 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → (((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦) → [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R )) |
82 | 81 | imp 407 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ) |
83 | 25, 82 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈(1P
+P 1P),
1P〉] ~R
) |
84 | | df-1r 10817 |
. . . . . . . . . 10
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
85 | 83, 84 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R) |
86 | | oveq2 7283 |
. . . . . . . . . . 11
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R )) |
87 | 86 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → (([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R ↔
([〈𝑦, 𝑧〉]
~R ·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R)) |
88 | 87 | rspcev 3561 |
. . . . . . . . 9
⊢
(([〈(𝑣
+P 1P),
1P〉] ~R ∈
R ∧ ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R) →
∃𝑥 ∈
R ([〈𝑦,
𝑧〉]
~R ·R 𝑥) =
1R) |
89 | 20, 85, 88 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R) |
90 | 89 | exp43 437 |
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑣 ∈
P → ((𝑤
·P 𝑣) = 1P →
((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)))) |
91 | 90 | rexlimdv 3212 |
. . . . . 6
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑣 ∈
P (𝑤
·P 𝑣) = 1P →
((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R))) |
92 | 13, 91 | syl5 34 |
. . . . 5
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (𝑤 ∈
P → ((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R))) |
93 | 92 | rexlimdv 3212 |
. . . 4
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑤 ∈
P (𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)) |
94 | 12, 93 | syl5 34 |
. . 3
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (0R <R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
R ([〈𝑦,
𝑧〉]
~R ·R 𝑥) =
1R)) |
95 | 4, 9, 94 | ecoptocl 8596 |
. 2
⊢ (𝐴 ∈ R →
(0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) =
1R)) |
96 | 3, 95 | mpcom 38 |
1
⊢
(0R <R 𝐴 → ∃𝑥 ∈ R (𝐴
·R 𝑥) =
1R) |