Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mo0sn Structured version   Visualization version   GIF version

Theorem mo0sn 48547
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mo0sn (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem mo0sn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . 3 𝑧 𝑥𝐴
2 nfv 1913 . . 3 𝑥 𝑧𝐴
3 eleq1w 2827 . . 3 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
41, 2, 3cbvmow 2606 . 2 (∃*𝑥 𝑥𝐴 ↔ ∃*𝑧 𝑧𝐴)
5 neq0 4375 . . . . . . . 8 𝐴 = ∅ ↔ ∃𝑧 𝑧𝐴)
65anbi1i 623 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ ∃*𝑧 𝑧𝐴) ↔ (∃𝑧 𝑧𝐴 ∧ ∃*𝑧 𝑧𝐴))
7 df-eu 2572 . . . . . . 7 (∃!𝑧 𝑧𝐴 ↔ (∃𝑧 𝑧𝐴 ∧ ∃*𝑧 𝑧𝐴))
8 eu6 2577 . . . . . . 7 (∃!𝑧 𝑧𝐴 ↔ ∃𝑦𝑧(𝑧𝐴𝑧 = 𝑦))
96, 7, 83bitr2i 299 . . . . . 6 ((¬ 𝐴 = ∅ ∧ ∃*𝑧 𝑧𝐴) ↔ ∃𝑦𝑧(𝑧𝐴𝑧 = 𝑦))
10 dfcleq 2733 . . . . . . . 8 (𝐴 = {𝑦} ↔ ∀𝑧(𝑧𝐴𝑧 ∈ {𝑦}))
11 velsn 4664 . . . . . . . . . 10 (𝑧 ∈ {𝑦} ↔ 𝑧 = 𝑦)
1211bibi2i 337 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ {𝑦}) ↔ (𝑧𝐴𝑧 = 𝑦))
1312albii 1817 . . . . . . . 8 (∀𝑧(𝑧𝐴𝑧 ∈ {𝑦}) ↔ ∀𝑧(𝑧𝐴𝑧 = 𝑦))
1410, 13sylbbr 236 . . . . . . 7 (∀𝑧(𝑧𝐴𝑧 = 𝑦) → 𝐴 = {𝑦})
1514eximi 1833 . . . . . 6 (∃𝑦𝑧(𝑧𝐴𝑧 = 𝑦) → ∃𝑦 𝐴 = {𝑦})
169, 15sylbi 217 . . . . 5 ((¬ 𝐴 = ∅ ∧ ∃*𝑧 𝑧𝐴) → ∃𝑦 𝐴 = {𝑦})
1716expcom 413 . . . 4 (∃*𝑧 𝑧𝐴 → (¬ 𝐴 = ∅ → ∃𝑦 𝐴 = {𝑦}))
1817orrd 862 . . 3 (∃*𝑧 𝑧𝐴 → (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
19 mo0 48545 . . . 4 (𝐴 = ∅ → ∃*𝑧 𝑧𝐴)
20 mosn 48544 . . . . 5 (𝐴 = {𝑦} → ∃*𝑧 𝑧𝐴)
2120exlimiv 1929 . . . 4 (∃𝑦 𝐴 = {𝑦} → ∃*𝑧 𝑧𝐴)
2219, 21jaoi 856 . . 3 ((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) → ∃*𝑧 𝑧𝐴)
2318, 22impbii 209 . 2 (∃*𝑧 𝑧𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
244, 23bitri 275 1 (∃*𝑥 𝑥𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 846  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  ∃!weu 2571  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-v 3490  df-sbc 3805  df-dif 3979  df-nul 4353  df-sn 4649
This theorem is referenced by:  mosssn2  48548  mofmo  48560  mofeu  48561  f1mo  48566  setc2othin  48723
  Copyright terms: Public domain W3C validator