Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑧 𝑥 ∈ 𝐴 |
2 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
3 | | eleq1w 2822 |
. . 3
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
4 | 1, 2, 3 | cbvmow 2604 |
. 2
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑧 𝑧 ∈ 𝐴) |
5 | | neq0 4280 |
. . . . . . . 8
⊢ (¬
𝐴 = ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
6 | 5 | anbi1i 624 |
. . . . . . 7
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) ↔ (∃𝑧 𝑧 ∈ 𝐴 ∧ ∃*𝑧 𝑧 ∈ 𝐴)) |
7 | | df-eu 2570 |
. . . . . . 7
⊢
(∃!𝑧 𝑧 ∈ 𝐴 ↔ (∃𝑧 𝑧 ∈ 𝐴 ∧ ∃*𝑧 𝑧 ∈ 𝐴)) |
8 | | eu6 2575 |
. . . . . . 7
⊢
(∃!𝑧 𝑧 ∈ 𝐴 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
9 | 6, 7, 8 | 3bitr2i 299 |
. . . . . 6
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
10 | | dfcleq 2732 |
. . . . . . . 8
⊢ (𝐴 = {𝑦} ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦})) |
11 | | velsn 4578 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦} ↔ 𝑧 = 𝑦) |
12 | 11 | bibi2i 338 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦}) ↔ (𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
13 | 12 | albii 1822 |
. . . . . . . 8
⊢
(∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦}) ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
14 | 10, 13 | sylbbr 235 |
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦) → 𝐴 = {𝑦}) |
15 | 14 | eximi 1838 |
. . . . . 6
⊢
(∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦) → ∃𝑦 𝐴 = {𝑦}) |
16 | 9, 15 | sylbi 216 |
. . . . 5
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) → ∃𝑦 𝐴 = {𝑦}) |
17 | 16 | expcom 414 |
. . . 4
⊢
(∃*𝑧 𝑧 ∈ 𝐴 → (¬ 𝐴 = ∅ → ∃𝑦 𝐴 = {𝑦})) |
18 | 17 | orrd 860 |
. . 3
⊢
(∃*𝑧 𝑧 ∈ 𝐴 → (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |
19 | | mo0 46170 |
. . . 4
⊢ (𝐴 = ∅ → ∃*𝑧 𝑧 ∈ 𝐴) |
20 | | mosn 46169 |
. . . . 5
⊢ (𝐴 = {𝑦} → ∃*𝑧 𝑧 ∈ 𝐴) |
21 | 20 | exlimiv 1934 |
. . . 4
⊢
(∃𝑦 𝐴 = {𝑦} → ∃*𝑧 𝑧 ∈ 𝐴) |
22 | 19, 21 | jaoi 854 |
. . 3
⊢ ((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) → ∃*𝑧 𝑧 ∈ 𝐴) |
23 | 18, 22 | impbii 208 |
. 2
⊢
(∃*𝑧 𝑧 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |
24 | 4, 23 | bitri 274 |
1
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |