| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 2 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
| 3 | | eleq1w 2818 |
. . 3
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 4 | 1, 2, 3 | cbvmow 2603 |
. 2
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∃*𝑧 𝑧 ∈ 𝐴) |
| 5 | | neq0 4332 |
. . . . . . . 8
⊢ (¬
𝐴 = ∅ ↔
∃𝑧 𝑧 ∈ 𝐴) |
| 6 | 5 | anbi1i 624 |
. . . . . . 7
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) ↔ (∃𝑧 𝑧 ∈ 𝐴 ∧ ∃*𝑧 𝑧 ∈ 𝐴)) |
| 7 | | df-eu 2569 |
. . . . . . 7
⊢
(∃!𝑧 𝑧 ∈ 𝐴 ↔ (∃𝑧 𝑧 ∈ 𝐴 ∧ ∃*𝑧 𝑧 ∈ 𝐴)) |
| 8 | | eu6 2574 |
. . . . . . 7
⊢
(∃!𝑧 𝑧 ∈ 𝐴 ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
| 9 | 6, 7, 8 | 3bitr2i 299 |
. . . . . 6
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
| 10 | | dfcleq 2729 |
. . . . . . . 8
⊢ (𝐴 = {𝑦} ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦})) |
| 11 | | velsn 4622 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑦} ↔ 𝑧 = 𝑦) |
| 12 | 11 | bibi2i 337 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦}) ↔ (𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
| 13 | 12 | albii 1819 |
. . . . . . . 8
⊢
(∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑦}) ↔ ∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦)) |
| 14 | 10, 13 | sylbbr 236 |
. . . . . . 7
⊢
(∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦) → 𝐴 = {𝑦}) |
| 15 | 14 | eximi 1835 |
. . . . . 6
⊢
(∃𝑦∀𝑧(𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦) → ∃𝑦 𝐴 = {𝑦}) |
| 16 | 9, 15 | sylbi 217 |
. . . . 5
⊢ ((¬
𝐴 = ∅ ∧
∃*𝑧 𝑧 ∈ 𝐴) → ∃𝑦 𝐴 = {𝑦}) |
| 17 | 16 | expcom 413 |
. . . 4
⊢
(∃*𝑧 𝑧 ∈ 𝐴 → (¬ 𝐴 = ∅ → ∃𝑦 𝐴 = {𝑦})) |
| 18 | 17 | orrd 863 |
. . 3
⊢
(∃*𝑧 𝑧 ∈ 𝐴 → (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |
| 19 | | mo0 48759 |
. . . 4
⊢ (𝐴 = ∅ → ∃*𝑧 𝑧 ∈ 𝐴) |
| 20 | | mosn 48758 |
. . . . 5
⊢ (𝐴 = {𝑦} → ∃*𝑧 𝑧 ∈ 𝐴) |
| 21 | 20 | exlimiv 1930 |
. . . 4
⊢
(∃𝑦 𝐴 = {𝑦} → ∃*𝑧 𝑧 ∈ 𝐴) |
| 22 | 19, 21 | jaoi 857 |
. . 3
⊢ ((𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦}) → ∃*𝑧 𝑧 ∈ 𝐴) |
| 23 | 18, 22 | impbii 209 |
. 2
⊢
(∃*𝑧 𝑧 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |
| 24 | 4, 23 | bitri 275 |
1
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ (𝐴 = ∅ ∨ ∃𝑦 𝐴 = {𝑦})) |