| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosssn | ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4776 | . 2 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 2 | mo0 48824 | . . 3 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 3 | mosn 48823 | . . 3 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥 ∈ 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ∃*wmo 2532 ⊆ wss 3900 ∅c0 4281 {csn 4574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-v 3436 df-sbc 3740 df-dif 3903 df-ss 3917 df-nul 4282 df-sn 4575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |