![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn | Structured version Visualization version GIF version |
Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
Ref | Expression |
---|---|
mosssn | ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4831 | . 2 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
2 | mo0 48070 | . . 3 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | |
3 | mosn 48069 | . . 3 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | |
4 | 2, 3 | jaoi 855 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥 ∈ 𝐴) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∃*wmo 2526 ⊆ wss 3944 ∅c0 4322 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-v 3463 df-sbc 3774 df-dif 3947 df-ss 3961 df-nul 4323 df-sn 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |