| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosssn | ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4825 | . 2 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 2 | mo0 48738 | . . 3 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 3 | mosn 48737 | . . 3 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥 ∈ 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∃*wmo 2537 ⊆ wss 3950 ∅c0 4332 {csn 4625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-v 3481 df-sbc 3788 df-dif 3953 df-ss 3967 df-nul 4333 df-sn 4626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |