Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn Structured version   Visualization version   GIF version

Theorem mosssn 48546
Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosssn
StepHypRef Expression
1 sssn 4851 . 2 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
2 mo0 48545 . . 3 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
3 mosn 48544 . . 3 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
42, 3jaoi 856 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥𝐴)
51, 4sylbi 217 1 (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  ∃*wmo 2541  wss 3976  c0 4352  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-v 3490  df-sbc 3805  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator