Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn Structured version   Visualization version   GIF version

Theorem mosssn 48663
Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosssn
StepHypRef Expression
1 sssn 4831 . 2 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
2 mo0 48662 . . 3 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
3 mosn 48661 . . 3 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
42, 3jaoi 857 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥𝐴)
51, 4sylbi 217 1 (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1537  wcel 2106  ∃*wmo 2536  wss 3963  c0 4339  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-v 3480  df-sbc 3792  df-dif 3966  df-ss 3980  df-nul 4340  df-sn 4632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator