Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mosssn Structured version   Visualization version   GIF version

Theorem mosssn 46048
Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.)
Assertion
Ref Expression
mosssn (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mosssn
StepHypRef Expression
1 sssn 4756 . 2 (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵}))
2 mo0 46047 . . 3 (𝐴 = ∅ → ∃*𝑥 𝑥𝐴)
3 mosn 46046 . . 3 (𝐴 = {𝐵} → ∃*𝑥 𝑥𝐴)
42, 3jaoi 853 . 2 ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥𝐴)
51, 4sylbi 216 1 (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  ∃*wmo 2538  wss 3883  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-v 3424  df-sbc 3712  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator