| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mosssn | Structured version Visualization version GIF version | ||
| Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| mosssn | ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn 4807 | . 2 ⊢ (𝐴 ⊆ {𝐵} ↔ (𝐴 = ∅ ∨ 𝐴 = {𝐵})) | |
| 2 | mo0 48759 | . . 3 ⊢ (𝐴 = ∅ → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 3 | mosn 48758 | . . 3 ⊢ (𝐴 = {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 = {𝐵}) → ∃*𝑥 𝑥 ∈ 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∃*𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 ⊆ wss 3931 ∅c0 4313 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-v 3466 df-sbc 3771 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |