| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz7.44lem1 | Structured version Visualization version GIF version | ||
| Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8425, tz7.44-2 8426, and tz7.44-3 8427 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5207 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| tz7.44lem1.1 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
| Ref | Expression |
|---|---|
| tz7.44lem1 | ⊢ Fun 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab 6576 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))) | |
| 2 | fvex 6894 | . . . 4 ⊢ (𝐻‘(𝑥‘∪ dom 𝑥)) ∈ V | |
| 3 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 4 | rnexg 7903 | . . . . 5 ⊢ (𝑥 ∈ V → ran 𝑥 ∈ V) | |
| 5 | uniexg 7739 | . . . . 5 ⊢ (ran 𝑥 ∈ V → ∪ ran 𝑥 ∈ V) | |
| 6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ∪ ran 𝑥 ∈ V |
| 7 | nlim0 6417 | . . . . . 6 ⊢ ¬ Lim ∅ | |
| 8 | dm0 5905 | . . . . . . 7 ⊢ dom ∅ = ∅ | |
| 9 | limeq 6369 | . . . . . . 7 ⊢ (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (Lim dom ∅ ↔ Lim ∅) |
| 11 | 7, 10 | mtbir 323 | . . . . 5 ⊢ ¬ Lim dom ∅ |
| 12 | dmeq 5888 | . . . . . . 7 ⊢ (𝑥 = ∅ → dom 𝑥 = dom ∅) | |
| 13 | limeq 6369 | . . . . . . 7 ⊢ (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) | |
| 14 | 12, 13 | syl 17 | . . . . . 6 ⊢ (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) |
| 15 | 14 | biimpa 476 | . . . . 5 ⊢ ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅) |
| 16 | 11, 15 | mto 197 | . . . 4 ⊢ ¬ (𝑥 = ∅ ∧ Lim dom 𝑥) |
| 17 | 2, 6, 16 | moeq3 3700 | . . 3 ⊢ ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥)) |
| 18 | 1, 17 | mpgbir 1799 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
| 19 | tz7.44lem1.1 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} | |
| 20 | 19 | funeqi 6562 | . 2 ⊢ (Fun 𝐺 ↔ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))}) |
| 21 | 18, 20 | mpbir 231 | 1 ⊢ Fun 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ∃*wmo 2538 Vcvv 3464 ∅c0 4313 ∪ cuni 4888 {copab 5186 dom cdm 5659 ran crn 5660 Lim wlim 6358 Fun wfun 6530 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-lim 6362 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |