![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz7.44lem1 | Structured version Visualization version GIF version |
Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8390, tz7.44-2 8391, and tz7.44-3 8392 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5226 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
tz7.44lem1.1 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
Ref | Expression |
---|---|
tz7.44lem1 | ⊢ Fun 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6573 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))) | |
2 | fvex 6892 | . . . 4 ⊢ (𝐻‘(𝑥‘∪ dom 𝑥)) ∈ V | |
3 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | rnexg 7879 | . . . . 5 ⊢ (𝑥 ∈ V → ran 𝑥 ∈ V) | |
5 | uniexg 7714 | . . . . 5 ⊢ (ran 𝑥 ∈ V → ∪ ran 𝑥 ∈ V) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ∪ ran 𝑥 ∈ V |
7 | nlim0 6413 | . . . . . 6 ⊢ ¬ Lim ∅ | |
8 | dm0 5913 | . . . . . . 7 ⊢ dom ∅ = ∅ | |
9 | limeq 6366 | . . . . . . 7 ⊢ (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅)) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (Lim dom ∅ ↔ Lim ∅) |
11 | 7, 10 | mtbir 322 | . . . . 5 ⊢ ¬ Lim dom ∅ |
12 | dmeq 5896 | . . . . . . 7 ⊢ (𝑥 = ∅ → dom 𝑥 = dom ∅) | |
13 | limeq 6366 | . . . . . . 7 ⊢ (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) |
15 | 14 | biimpa 477 | . . . . 5 ⊢ ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅) |
16 | 11, 15 | mto 196 | . . . 4 ⊢ ¬ (𝑥 = ∅ ∧ Lim dom 𝑥) |
17 | 2, 6, 16 | moeq3 3705 | . . 3 ⊢ ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥)) |
18 | 1, 17 | mpgbir 1801 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
19 | tz7.44lem1.1 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} | |
20 | 19 | funeqi 6559 | . 2 ⊢ (Fun 𝐺 ↔ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))}) |
21 | 18, 20 | mpbir 230 | 1 ⊢ Fun 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 Vcvv 3474 ∅c0 4319 ∪ cuni 4902 {copab 5204 dom cdm 5670 ran crn 5671 Lim wlim 6355 Fun wfun 6527 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 ax-un 7709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-ord 6357 df-lim 6359 df-iota 6485 df-fun 6535 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |