Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz7.44lem1 | Structured version Visualization version GIF version |
Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8237, tz7.44-2 8238, and tz7.44-3 8239 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5158 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
tz7.44lem1.1 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
Ref | Expression |
---|---|
tz7.44lem1 | ⊢ Fun 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funopab 6469 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))) | |
2 | fvex 6787 | . . . 4 ⊢ (𝐻‘(𝑥‘∪ dom 𝑥)) ∈ V | |
3 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
4 | rnexg 7751 | . . . . 5 ⊢ (𝑥 ∈ V → ran 𝑥 ∈ V) | |
5 | uniexg 7593 | . . . . 5 ⊢ (ran 𝑥 ∈ V → ∪ ran 𝑥 ∈ V) | |
6 | 3, 4, 5 | mp2b 10 | . . . 4 ⊢ ∪ ran 𝑥 ∈ V |
7 | nlim0 6324 | . . . . . 6 ⊢ ¬ Lim ∅ | |
8 | dm0 5829 | . . . . . . 7 ⊢ dom ∅ = ∅ | |
9 | limeq 6278 | . . . . . . 7 ⊢ (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅)) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (Lim dom ∅ ↔ Lim ∅) |
11 | 7, 10 | mtbir 323 | . . . . 5 ⊢ ¬ Lim dom ∅ |
12 | dmeq 5812 | . . . . . . 7 ⊢ (𝑥 = ∅ → dom 𝑥 = dom ∅) | |
13 | limeq 6278 | . . . . . . 7 ⊢ (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) | |
14 | 12, 13 | syl 17 | . . . . . 6 ⊢ (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅)) |
15 | 14 | biimpa 477 | . . . . 5 ⊢ ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅) |
16 | 11, 15 | mto 196 | . . . 4 ⊢ ¬ (𝑥 = ∅ ∧ Lim dom 𝑥) |
17 | 2, 6, 16 | moeq3 3647 | . . 3 ⊢ ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥)) |
18 | 1, 17 | mpgbir 1802 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} |
19 | tz7.44lem1.1 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))} | |
20 | 19 | funeqi 6455 | . 2 ⊢ (Fun 𝐺 ↔ Fun {〈𝑥, 𝑦〉 ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥‘∪ dom 𝑥))) ∨ (Lim dom 𝑥 ∧ 𝑦 = ∪ ran 𝑥))}) |
21 | 18, 20 | mpbir 230 | 1 ⊢ Fun 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 ∃*wmo 2538 Vcvv 3432 ∅c0 4256 ∪ cuni 4839 {copab 5136 dom cdm 5589 ran crn 5590 Lim wlim 6267 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-ord 6269 df-lim 6271 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |