MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Structured version   Visualization version   GIF version

Theorem tz7.44lem1 8401
Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8402, tz7.44-2 8403, and tz7.44-3 8404 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5231 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
Assertion
Ref Expression
tz7.44lem1 Fun 𝐺
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐻
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 6580 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥)))
2 fvex 6901 . . . 4 (𝐻‘(𝑥 dom 𝑥)) ∈ V
3 vex 3478 . . . . 5 𝑥 ∈ V
4 rnexg 7891 . . . . 5 (𝑥 ∈ V → ran 𝑥 ∈ V)
5 uniexg 7726 . . . . 5 (ran 𝑥 ∈ V → ran 𝑥 ∈ V)
63, 4, 5mp2b 10 . . . 4 ran 𝑥 ∈ V
7 nlim0 6420 . . . . . 6 ¬ Lim ∅
8 dm0 5918 . . . . . . 7 dom ∅ = ∅
9 limeq 6373 . . . . . . 7 (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅))
108, 9ax-mp 5 . . . . . 6 (Lim dom ∅ ↔ Lim ∅)
117, 10mtbir 322 . . . . 5 ¬ Lim dom ∅
12 dmeq 5901 . . . . . . 7 (𝑥 = ∅ → dom 𝑥 = dom ∅)
13 limeq 6373 . . . . . . 7 (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1412, 13syl 17 . . . . . 6 (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1514biimpa 477 . . . . 5 ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅)
1611, 15mto 196 . . . 4 ¬ (𝑥 = ∅ ∧ Lim dom 𝑥)
172, 6, 16moeq3 3707 . . 3 ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))
181, 17mpgbir 1801 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
19 tz7.44lem1.1 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
2019funeqi 6566 . 2 (Fun 𝐺 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))})
2118, 20mpbir 230 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  ∃*wmo 2532  Vcvv 3474  c0 4321   cuni 4907  {copab 5209  dom cdm 5675  ran crn 5676  Lim wlim 6362  Fun wfun 6534  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-ord 6364  df-lim 6366  df-iota 6492  df-fun 6542  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator