MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Structured version   Visualization version   GIF version

Theorem tz7.44lem1 8352
Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8353, tz7.44-2 8354, and tz7.44-3 8355 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5190 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
Assertion
Ref Expression
tz7.44lem1 Fun 𝐺
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐻
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 6537 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥)))
2 fvex 6856 . . . 4 (𝐻‘(𝑥 dom 𝑥)) ∈ V
3 vex 3450 . . . . 5 𝑥 ∈ V
4 rnexg 7842 . . . . 5 (𝑥 ∈ V → ran 𝑥 ∈ V)
5 uniexg 7678 . . . . 5 (ran 𝑥 ∈ V → ran 𝑥 ∈ V)
63, 4, 5mp2b 10 . . . 4 ran 𝑥 ∈ V
7 nlim0 6377 . . . . . 6 ¬ Lim ∅
8 dm0 5877 . . . . . . 7 dom ∅ = ∅
9 limeq 6330 . . . . . . 7 (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅))
108, 9ax-mp 5 . . . . . 6 (Lim dom ∅ ↔ Lim ∅)
117, 10mtbir 323 . . . . 5 ¬ Lim dom ∅
12 dmeq 5860 . . . . . . 7 (𝑥 = ∅ → dom 𝑥 = dom ∅)
13 limeq 6330 . . . . . . 7 (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1412, 13syl 17 . . . . . 6 (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1514biimpa 478 . . . . 5 ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅)
1611, 15mto 196 . . . 4 ¬ (𝑥 = ∅ ∧ Lim dom 𝑥)
172, 6, 16moeq3 3671 . . 3 ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))
181, 17mpgbir 1802 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
19 tz7.44lem1.1 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
2019funeqi 6523 . 2 (Fun 𝐺 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))})
2118, 20mpbir 230 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wo 846  w3o 1087   = wceq 1542  wcel 2107  ∃*wmo 2537  Vcvv 3446  c0 4283   cuni 4866  {copab 5168  dom cdm 5634  ran crn 5635  Lim wlim 6319  Fun wfun 6491  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-ord 6321  df-lim 6323  df-iota 6449  df-fun 6499  df-fv 6505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator