MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Structured version   Visualization version   GIF version

Theorem tz7.44lem1 8324
Description: The ordered pair abstraction 𝐺 defined in the hypothesis is a function. This was a lemma for tz7.44-1 8325, tz7.44-2 8326, and tz7.44-3 8327 when they used that definition of 𝐺. Now, they use the maps-to df-mpt 5171 idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
Assertion
Ref Expression
tz7.44lem1 Fun 𝐺
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐻
Allowed substitution hints:   𝐴(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 6516 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))} ↔ ∀𝑥∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥)))
2 fvex 6835 . . . 4 (𝐻‘(𝑥 dom 𝑥)) ∈ V
3 vex 3440 . . . . 5 𝑥 ∈ V
4 rnexg 7832 . . . . 5 (𝑥 ∈ V → ran 𝑥 ∈ V)
5 uniexg 7673 . . . . 5 (ran 𝑥 ∈ V → ran 𝑥 ∈ V)
63, 4, 5mp2b 10 . . . 4 ran 𝑥 ∈ V
7 nlim0 6366 . . . . . 6 ¬ Lim ∅
8 dm0 5859 . . . . . . 7 dom ∅ = ∅
9 limeq 6318 . . . . . . 7 (dom ∅ = ∅ → (Lim dom ∅ ↔ Lim ∅))
108, 9ax-mp 5 . . . . . 6 (Lim dom ∅ ↔ Lim ∅)
117, 10mtbir 323 . . . . 5 ¬ Lim dom ∅
12 dmeq 5842 . . . . . . 7 (𝑥 = ∅ → dom 𝑥 = dom ∅)
13 limeq 6318 . . . . . . 7 (dom 𝑥 = dom ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1412, 13syl 17 . . . . . 6 (𝑥 = ∅ → (Lim dom 𝑥 ↔ Lim dom ∅))
1514biimpa 476 . . . . 5 ((𝑥 = ∅ ∧ Lim dom 𝑥) → Lim dom ∅)
1611, 15mto 197 . . . 4 ¬ (𝑥 = ∅ ∧ Lim dom 𝑥)
172, 6, 16moeq3 3666 . . 3 ∃*𝑦((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))
181, 17mpgbir 1800 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
19 tz7.44lem1.1 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))}
2019funeqi 6502 . 2 (Fun 𝐺 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ((𝑥 = ∅ ∧ 𝑦 = 𝐴) ∨ (¬ (𝑥 = ∅ ∨ Lim dom 𝑥) ∧ 𝑦 = (𝐻‘(𝑥 dom 𝑥))) ∨ (Lim dom 𝑥𝑦 = ran 𝑥))})
2118, 20mpbir 231 1 Fun 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  ∃*wmo 2533  Vcvv 3436  c0 4280   cuni 4856  {copab 5151  dom cdm 5614  ran crn 5615  Lim wlim 6307  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6309  df-lim 6311  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator