| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun3f | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
| Ref | Expression |
|---|---|
| dffun3f.1 | ⊢ Ⅎ𝑥𝐴 |
| dffun3f.2 | ⊢ Ⅎ𝑦𝐴 |
| dffun3f.3 | ⊢ Ⅎ𝑧𝐴 |
| Ref | Expression |
|---|---|
| dffun3f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun3f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dffun3f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 1, 2 | dffun6f 6537 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| 4 | nfcv 2893 | . . . . . 6 ⊢ Ⅎ𝑧𝑥 | |
| 5 | dffun3f.3 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 6 | nfcv 2893 | . . . . . 6 ⊢ Ⅎ𝑧𝑦 | |
| 7 | 4, 5, 6 | nfbr 5162 | . . . . 5 ⊢ Ⅎ𝑧 𝑥𝐴𝑦 |
| 8 | 7 | mof 2557 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 9 | 8 | albii 1819 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| 11 | 3, 10 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∃*wmo 2532 Ⅎwnfc 2878 class class class wbr 5115 Rel wrel 5651 Fun wfun 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-fun 6521 |
| This theorem is referenced by: setrec2lem2 49560 |
| Copyright terms: Public domain | W3C validator |