| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun3f | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
| Ref | Expression |
|---|---|
| dffun3f.1 | ⊢ Ⅎ𝑥𝐴 |
| dffun3f.2 | ⊢ Ⅎ𝑦𝐴 |
| dffun3f.3 | ⊢ Ⅎ𝑧𝐴 |
| Ref | Expression |
|---|---|
| dffun3f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun3f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dffun3f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 1, 2 | dffun6f 6501 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| 4 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑧𝑥 | |
| 5 | dffun3f.3 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 6 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑧𝑦 | |
| 7 | 4, 5, 6 | nfbr 5140 | . . . . 5 ⊢ Ⅎ𝑧 𝑥𝐴𝑦 |
| 8 | 7 | mof 2560 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 9 | 8 | albii 1820 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| 11 | 3, 10 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∃*wmo 2535 Ⅎwnfc 2880 class class class wbr 5093 Rel wrel 5624 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6488 |
| This theorem is referenced by: setrec2lem2 49820 |
| Copyright terms: Public domain | W3C validator |