![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun3f | Structured version Visualization version GIF version |
Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
Ref | Expression |
---|---|
dffun3f.1 | ⊢ Ⅎ𝑥𝐴 |
dffun3f.2 | ⊢ Ⅎ𝑦𝐴 |
dffun3f.3 | ⊢ Ⅎ𝑧𝐴 |
Ref | Expression |
---|---|
dffun3f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dffun3f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | 1, 2 | dffun6f 6561 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
4 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑧𝑥 | |
5 | dffun3f.3 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
6 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑧𝑦 | |
7 | 4, 5, 6 | nfbr 5195 | . . . . 5 ⊢ Ⅎ𝑧 𝑥𝐴𝑦 |
8 | 7 | mof 2557 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
9 | 8 | albii 1821 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
11 | 3, 10 | bitri 274 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∃wex 1781 ∃*wmo 2532 Ⅎwnfc 2883 class class class wbr 5148 Rel wrel 5681 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-fun 6545 |
This theorem is referenced by: setrec2lem2 47729 |
Copyright terms: Public domain | W3C validator |