| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun3f | Structured version Visualization version GIF version | ||
| Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
| Ref | Expression |
|---|---|
| dffun3f.1 | ⊢ Ⅎ𝑥𝐴 |
| dffun3f.2 | ⊢ Ⅎ𝑦𝐴 |
| dffun3f.3 | ⊢ Ⅎ𝑧𝐴 |
| Ref | Expression |
|---|---|
| dffun3f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun3f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dffun3f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | 1, 2 | dffun6f 6558 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| 4 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑧𝑥 | |
| 5 | dffun3f.3 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 6 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑧𝑦 | |
| 7 | 4, 5, 6 | nfbr 5170 | . . . . 5 ⊢ Ⅎ𝑧 𝑥𝐴𝑦 |
| 8 | 7 | mof 2561 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 9 | 8 | albii 1818 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| 11 | 3, 10 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∃*wmo 2536 Ⅎwnfc 2882 class class class wbr 5123 Rel wrel 5670 Fun wfun 6534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-fun 6542 |
| This theorem is referenced by: setrec2lem2 49197 |
| Copyright terms: Public domain | W3C validator |