Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffun3f Structured version   Visualization version   GIF version

Theorem dffun3f 48164
Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.)
Hypotheses
Ref Expression
dffun3f.1 𝑥𝐴
dffun3f.2 𝑦𝐴
dffun3f.3 𝑧𝐴
Assertion
Ref Expression
dffun3f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem dffun3f
StepHypRef Expression
1 dffun3f.1 . . 3 𝑥𝐴
2 dffun3f.2 . . 3 𝑦𝐴
31, 2dffun6f 6569 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
4 nfcv 2898 . . . . . 6 𝑧𝑥
5 dffun3f.3 . . . . . 6 𝑧𝐴
6 nfcv 2898 . . . . . 6 𝑧𝑦
74, 5, 6nfbr 5197 . . . . 5 𝑧 𝑥𝐴𝑦
87mof 2552 . . . 4 (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
98albii 1813 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧))
109anbi2i 621 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
113, 10bitri 274 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑧𝑦(𝑥𝐴𝑦𝑦 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531  wex 1773  ∃*wmo 2527  wnfc 2878   class class class wbr 5150  Rel wrel 5685  Fun wfun 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-fun 6553
This theorem is referenced by:  setrec2lem2  48176
  Copyright terms: Public domain W3C validator