Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffun3f | Structured version Visualization version GIF version |
Description: Alternate definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Emmett Weisz, 14-Mar-2021.) |
Ref | Expression |
---|---|
dffun3f.1 | ⊢ Ⅎ𝑥𝐴 |
dffun3f.2 | ⊢ Ⅎ𝑦𝐴 |
dffun3f.3 | ⊢ Ⅎ𝑧𝐴 |
Ref | Expression |
---|---|
dffun3f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dffun3f.2 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | 1, 2 | dffun6f 6432 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
4 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑧𝑥 | |
5 | dffun3f.3 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
6 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑧𝑦 | |
7 | 4, 5, 6 | nfbr 5117 | . . . . 5 ⊢ Ⅎ𝑧 𝑥𝐴𝑦 |
8 | 7 | mof 2563 | . . . 4 ⊢ (∃*𝑦 𝑥𝐴𝑦 ↔ ∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
9 | 8 | albii 1823 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧)) |
10 | 9 | anbi2i 622 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
11 | 3, 10 | bitri 274 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃𝑧∀𝑦(𝑥𝐴𝑦 → 𝑦 = 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 Ⅎwnfc 2886 class class class wbr 5070 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |