MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptresidOLD Structured version   Visualization version   GIF version

Theorem mptresidOLD 5958
Description: Obsolete version of mptresid 5956 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mptresidOLD (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mptresidOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5163 . 2 (𝑥𝐴𝑥) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
2 opabresidOLD 5957 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
31, 2eqtri 2768 1 (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  {copab 5141  cmpt 5162   I cid 5488  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator