MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptresidOLD Structured version   Visualization version   GIF version

Theorem mptresidOLD 5949
Description: Obsolete version of mptresid 5947 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mptresidOLD (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mptresidOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5154 . 2 (𝑥𝐴𝑥) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
2 opabresidOLD 5948 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
31, 2eqtri 2766 1 (𝑥𝐴𝑥) = ( I ↾ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {copab 5132  cmpt 5153   I cid 5479  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator