| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3988 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5912 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 4013 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 6011 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 ⊆ wss 3931 I cid 5557 dom cdm 5665 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-dm 5675 df-res 5677 |
| This theorem is referenced by: iordsmo 8379 residfi 9360 hartogslem1 9564 dfac9 10159 hsmexlem5 10452 relexpdmg 15063 relexpfld 15070 relexpaddg 15074 dirdm 18614 islinds2 21787 lindsind2 21793 f1linds 21799 wilthlem3 27049 ausgrusgrb 29110 usgrres1 29260 usgrexilem 29385 filnetlem3 36340 filnetlem4 36341 rclexi 43590 dfrtrcl5 43604 dfrcl2 43649 brfvrcld2 43667 iunrelexp0 43677 relexpiidm 43679 relexp01min 43688 ushggricedg 47854 stgrusgra 47884 gpgusgra 47970 uspgrsprfo 48022 |
| Copyright terms: Public domain | W3C validator |