| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3968 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5875 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 3993 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 5973 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3444 ⊆ wss 3911 I cid 5525 dom cdm 5631 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 |
| This theorem is referenced by: iordsmo 8303 residfi 9265 hartogslem1 9471 dfac9 10066 hsmexlem5 10359 relexpdmg 14984 relexpfld 14991 relexpaddg 14995 dirdm 18541 islinds2 21755 lindsind2 21761 f1linds 21767 wilthlem3 27013 ausgrusgrb 29145 usgrres1 29295 usgrexilem 29420 filnetlem3 36361 filnetlem4 36362 rclexi 43597 dfrtrcl5 43611 dfrcl2 43656 brfvrcld2 43674 iunrelexp0 43684 relexpiidm 43686 relexp01min 43695 ushggricedg 47920 stgrusgra 47951 gpgiedgdmel 48033 gpgusgra 48041 uspgrsprfo 48129 |
| Copyright terms: Public domain | W3C validator |