![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version |
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3844 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | dmi 5587 | . . 3 ⊢ dom I = V | |
3 | 1, 2 | sseqtr4i 3857 | . 2 ⊢ 𝐴 ⊆ dom I |
4 | ssdmres 5671 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
5 | 3, 4 | mpbi 222 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 Vcvv 3398 ⊆ wss 3792 I cid 5262 dom cdm 5357 ↾ cres 5359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-dm 5367 df-res 5369 |
This theorem is referenced by: fnresi 6256 idssxpOLD 6257 iordsmo 7739 residfi 8537 hartogslem1 8738 dfac9 9295 hsmexlem5 9589 relexpdmg 14193 relexpfld 14200 relexpaddg 14204 dirdm 17624 islinds2 20560 lindsind2 20566 f1linds 20572 wilthlem3 25252 ausgrusgrb 26518 umgrres1 26665 usgrres1 26666 usgrexilem 26792 filnetlem3 32967 filnetlem4 32968 rclexi 38889 rtrclex 38891 rtrclexi 38895 cnvrcl0 38899 dfrtrcl5 38903 dfrcl2 38933 brfvrcld2 38951 iunrelexp0 38961 relexpiidm 38963 relexp01min 38972 idhe 39047 ushrisomgr 42764 uspgrsprfo 42781 |
Copyright terms: Public domain | W3C validator |