Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version |
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3941 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | dmi 5819 | . . 3 ⊢ dom I = V | |
3 | 1, 2 | sseqtrri 3954 | . 2 ⊢ 𝐴 ⊆ dom I |
4 | ssdmres 5903 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ⊆ wss 3883 I cid 5479 dom cdm 5580 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-dm 5590 df-res 5592 |
This theorem is referenced by: fnresiOLD 6546 iordsmo 8159 residfi 9030 hartogslem1 9231 dfac9 9823 hsmexlem5 10117 relexpdmg 14681 relexpfld 14688 relexpaddg 14692 dirdm 18233 islinds2 20930 lindsind2 20936 f1linds 20942 wilthlem3 26124 ausgrusgrb 27438 usgrres1 27585 usgrexilem 27710 filnetlem3 34496 filnetlem4 34497 rclexi 41112 cnvrcl0 41122 dfrtrcl5 41126 dfrcl2 41171 brfvrcld2 41189 iunrelexp0 41199 relexpiidm 41201 relexp01min 41210 ushrisomgr 45181 uspgrsprfo 45198 |
Copyright terms: Public domain | W3C validator |