MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresi Structured version   Visualization version   GIF version

Theorem dmresi 6023
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
dmresi dom ( I ↾ 𝐴) = 𝐴

Proof of Theorem dmresi
StepHypRef Expression
1 ssv 3971 . . 3 𝐴 ⊆ V
2 dmi 5885 . . 3 dom I = V
31, 2sseqtrri 3996 . 2 𝐴 ⊆ dom I
4 ssdmres 5984 . 2 (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴)
53, 4mpbi 230 1 dom ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3447  wss 3914   I cid 5532  dom cdm 5638  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-dm 5648  df-res 5650
This theorem is referenced by:  iordsmo  8326  residfi  9289  hartogslem1  9495  dfac9  10090  hsmexlem5  10383  relexpdmg  15008  relexpfld  15015  relexpaddg  15019  dirdm  18559  islinds2  21722  lindsind2  21728  f1linds  21734  wilthlem3  26980  ausgrusgrb  29092  usgrres1  29242  usgrexilem  29367  filnetlem3  36368  filnetlem4  36369  rclexi  43604  dfrtrcl5  43618  dfrcl2  43663  brfvrcld2  43681  iunrelexp0  43691  relexpiidm  43693  relexp01min  43702  ushggricedg  47927  stgrusgra  47958  gpgiedgdmel  48040  gpgusgra  48048  uspgrsprfo  48136
  Copyright terms: Public domain W3C validator