MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmresi Structured version   Visualization version   GIF version

Theorem dmresi 6000
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
dmresi dom ( I ↾ 𝐴) = 𝐴

Proof of Theorem dmresi
StepHypRef Expression
1 ssv 3954 . . 3 𝐴 ⊆ V
2 dmi 5860 . . 3 dom I = V
31, 2sseqtrri 3979 . 2 𝐴 ⊆ dom I
4 ssdmres 5961 . 2 (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴)
53, 4mpbi 230 1 dom ( I ↾ 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3436  wss 3897   I cid 5508  dom cdm 5614  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-dm 5624  df-res 5626
This theorem is referenced by:  iordsmo  8277  residfi  9222  hartogslem1  9428  dfac9  10028  hsmexlem5  10321  relexpdmg  14949  relexpfld  14956  relexpaddg  14960  dirdm  18506  islinds2  21750  lindsind2  21756  f1linds  21762  wilthlem3  27007  ausgrusgrb  29143  usgrres1  29293  usgrexilem  29418  filnetlem3  36424  filnetlem4  36425  rclexi  43718  dfrtrcl5  43732  dfrcl2  43777  brfvrcld2  43795  iunrelexp0  43805  relexpiidm  43807  relexp01min  43816  ushggricedg  48037  stgrusgra  48069  gpgiedgdmel  48159  gpgusgra  48167  uspgrsprfo  48258
  Copyright terms: Public domain W3C validator