| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3983 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5901 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 4008 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 6000 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3459 ⊆ wss 3926 I cid 5547 dom cdm 5654 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-dm 5664 df-res 5666 |
| This theorem is referenced by: iordsmo 8371 residfi 9350 hartogslem1 9556 dfac9 10151 hsmexlem5 10444 relexpdmg 15061 relexpfld 15068 relexpaddg 15072 dirdm 18610 islinds2 21773 lindsind2 21779 f1linds 21785 wilthlem3 27032 ausgrusgrb 29144 usgrres1 29294 usgrexilem 29419 filnetlem3 36398 filnetlem4 36399 rclexi 43639 dfrtrcl5 43653 dfrcl2 43698 brfvrcld2 43716 iunrelexp0 43726 relexpiidm 43728 relexp01min 43737 ushggricedg 47940 stgrusgra 47971 gpgiedgdmel 48053 gpgusgra 48061 uspgrsprfo 48123 |
| Copyright terms: Public domain | W3C validator |