| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3974 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5888 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 3999 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 5987 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ⊆ wss 3917 I cid 5535 dom cdm 5641 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-dm 5651 df-res 5653 |
| This theorem is referenced by: iordsmo 8329 residfi 9296 hartogslem1 9502 dfac9 10097 hsmexlem5 10390 relexpdmg 15015 relexpfld 15022 relexpaddg 15026 dirdm 18566 islinds2 21729 lindsind2 21735 f1linds 21741 wilthlem3 26987 ausgrusgrb 29099 usgrres1 29249 usgrexilem 29374 filnetlem3 36375 filnetlem4 36376 rclexi 43611 dfrtrcl5 43625 dfrcl2 43670 brfvrcld2 43688 iunrelexp0 43698 relexpiidm 43700 relexp01min 43709 ushggricedg 47931 stgrusgra 47962 gpgiedgdmel 48044 gpgusgra 48052 uspgrsprfo 48140 |
| Copyright terms: Public domain | W3C validator |