| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3971 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5885 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 3996 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 5984 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3447 ⊆ wss 3914 I cid 5532 dom cdm 5638 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 |
| This theorem is referenced by: iordsmo 8326 residfi 9289 hartogslem1 9495 dfac9 10090 hsmexlem5 10383 relexpdmg 15008 relexpfld 15015 relexpaddg 15019 dirdm 18559 islinds2 21722 lindsind2 21728 f1linds 21734 wilthlem3 26980 ausgrusgrb 29092 usgrres1 29242 usgrexilem 29367 filnetlem3 36368 filnetlem4 36369 rclexi 43604 dfrtrcl5 43618 dfrcl2 43663 brfvrcld2 43681 iunrelexp0 43691 relexpiidm 43693 relexp01min 43702 ushggricedg 47927 stgrusgra 47958 gpgiedgdmel 48040 gpgusgra 48048 uspgrsprfo 48136 |
| Copyright terms: Public domain | W3C validator |