| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3954 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5860 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 3979 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 5961 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ⊆ wss 3897 I cid 5508 dom cdm 5614 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-dm 5624 df-res 5626 |
| This theorem is referenced by: iordsmo 8277 residfi 9222 hartogslem1 9428 dfac9 10028 hsmexlem5 10321 relexpdmg 14949 relexpfld 14956 relexpaddg 14960 dirdm 18506 islinds2 21750 lindsind2 21756 f1linds 21762 wilthlem3 27007 ausgrusgrb 29143 usgrres1 29293 usgrexilem 29418 filnetlem3 36424 filnetlem4 36425 rclexi 43718 dfrtrcl5 43732 dfrcl2 43777 brfvrcld2 43795 iunrelexp0 43805 relexpiidm 43807 relexp01min 43816 ushggricedg 48037 stgrusgra 48069 gpgiedgdmel 48159 gpgusgra 48167 uspgrsprfo 48258 |
| Copyright terms: Public domain | W3C validator |