| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version | ||
| Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3960 | . . 3 ⊢ 𝐴 ⊆ V | |
| 2 | dmi 5864 | . . 3 ⊢ dom I = V | |
| 3 | 1, 2 | sseqtrri 3985 | . 2 ⊢ 𝐴 ⊆ dom I |
| 4 | ssdmres 5964 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ⊆ wss 3903 I cid 5513 dom cdm 5619 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-dm 5629 df-res 5631 |
| This theorem is referenced by: iordsmo 8280 residfi 9228 hartogslem1 9434 dfac9 10031 hsmexlem5 10324 relexpdmg 14949 relexpfld 14956 relexpaddg 14960 dirdm 18506 islinds2 21720 lindsind2 21726 f1linds 21732 wilthlem3 26978 ausgrusgrb 29110 usgrres1 29260 usgrexilem 29385 filnetlem3 36364 filnetlem4 36365 rclexi 43598 dfrtrcl5 43612 dfrcl2 43657 brfvrcld2 43675 iunrelexp0 43685 relexpiidm 43687 relexp01min 43696 ushggricedg 47921 stgrusgra 47953 gpgiedgdmel 48043 gpgusgra 48051 uspgrsprfo 48142 |
| Copyright terms: Public domain | W3C validator |