![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version |
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 4033 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | dmi 5946 | . . 3 ⊢ dom I = V | |
3 | 1, 2 | sseqtrri 4046 | . 2 ⊢ 𝐴 ⊆ dom I |
4 | ssdmres 6042 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
5 | 3, 4 | mpbi 230 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ⊆ wss 3976 I cid 5592 dom cdm 5700 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-dm 5710 df-res 5712 |
This theorem is referenced by: iordsmo 8413 residfi 9406 hartogslem1 9611 dfac9 10206 hsmexlem5 10499 relexpdmg 15091 relexpfld 15098 relexpaddg 15102 dirdm 18670 islinds2 21856 lindsind2 21862 f1linds 21868 wilthlem3 27131 ausgrusgrb 29200 usgrres1 29350 usgrexilem 29475 filnetlem3 36346 filnetlem4 36347 rclexi 43577 dfrtrcl5 43591 dfrcl2 43636 brfvrcld2 43654 iunrelexp0 43664 relexpiidm 43666 relexp01min 43675 ushggricedg 47780 uspgrsprfo 47871 |
Copyright terms: Public domain | W3C validator |