Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmresi | Structured version Visualization version GIF version |
Description: The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.) |
Ref | Expression |
---|---|
dmresi | ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3947 | . . 3 ⊢ 𝐴 ⊆ V | |
2 | dmi 5834 | . . 3 ⊢ dom I = V | |
3 | 1, 2 | sseqtrri 3960 | . 2 ⊢ 𝐴 ⊆ dom I |
4 | ssdmres 5917 | . 2 ⊢ (𝐴 ⊆ dom I ↔ dom ( I ↾ 𝐴) = 𝐴) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ dom ( I ↾ 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3434 ⊆ wss 3889 I cid 5490 dom cdm 5591 ↾ cres 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-dm 5601 df-res 5603 |
This theorem is referenced by: iordsmo 8208 residfi 9128 hartogslem1 9329 dfac9 9920 hsmexlem5 10214 relexpdmg 14781 relexpfld 14788 relexpaddg 14792 dirdm 18346 islinds2 21048 lindsind2 21054 f1linds 21060 wilthlem3 26247 ausgrusgrb 27563 usgrres1 27710 usgrexilem 27835 filnetlem3 34597 filnetlem4 34598 rclexi 41247 cnvrcl0 41257 dfrtrcl5 41261 dfrcl2 41306 brfvrcld2 41324 iunrelexp0 41334 relexpiidm 41336 relexp01min 41345 ushrisomgr 45333 uspgrsprfo 45350 |
Copyright terms: Public domain | W3C validator |