![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version |
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresid 6079 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | df-mpt 5250 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {copab 5228 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: idref 7180 2fvcoidd 7333 pwfseqlem5 10732 restid2 17490 curf2ndf 18317 hofcl 18329 yonedainv 18351 smndex2dlinvh 18952 sylow1lem2 19641 sylow3lem1 19669 0frgp 19821 frgpcyg 21615 evpmodpmf1o 21637 cnmptid 23690 txswaphmeolem 23833 idnghm 24785 dvexp 26011 dvmptid 26015 mvth 26051 plyid 26268 coeidp 26323 dgrid 26324 plyremlem 26364 taylply2 26427 taylply2OLD 26428 wilthlem2 27130 ftalem7 27140 fusgrfis 29365 fzto1st1 33095 cycpm2tr 33112 zrhre 33965 qqhre 33966 fsovcnvlem 43975 fourierdlem60 46087 fourierdlem61 46088 itcoval0mpt 48400 |
Copyright terms: Public domain | W3C validator |