| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 6003 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5175 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {copab 5155 ↦ cmpt 5174 I cid 5513 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: idref 7085 2fvcoidd 7237 pwfseqlem5 10561 restid2 17336 curf2ndf 18155 hofcl 18167 yonedainv 18189 smndex2dlinvh 18827 sylow1lem2 19513 sylow3lem1 19541 0frgp 19693 frgpcyg 21512 evpmodpmf1o 21535 cnmptid 23577 txswaphmeolem 23720 idnghm 24659 dvexp 25885 dvmptid 25889 mvth 25925 plyid 26142 coeidp 26197 dgrid 26198 plyremlem 26240 taylply2 26303 taylply2OLD 26304 wilthlem2 27007 ftalem7 27017 fusgrfis 29310 fzto1st1 33078 cycpm2tr 33095 zrhre 34053 qqhre 34054 fsovcnvlem 44130 fourierdlem60 46288 fourierdlem61 46289 itcoval0mpt 48791 |
| Copyright terms: Public domain | W3C validator |