| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 6021 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5189 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-res 5650 |
| This theorem is referenced by: idref 7118 2fvcoidd 7272 pwfseqlem5 10616 restid2 17393 curf2ndf 18208 hofcl 18220 yonedainv 18242 smndex2dlinvh 18844 sylow1lem2 19529 sylow3lem1 19557 0frgp 19709 frgpcyg 21483 evpmodpmf1o 21505 cnmptid 23548 txswaphmeolem 23691 idnghm 24631 dvexp 25857 dvmptid 25861 mvth 25897 plyid 26114 coeidp 26169 dgrid 26170 plyremlem 26212 taylply2 26275 taylply2OLD 26276 wilthlem2 26979 ftalem7 26989 fusgrfis 29257 fzto1st1 33059 cycpm2tr 33076 zrhre 34009 qqhre 34010 fsovcnvlem 44002 fourierdlem60 46164 fourierdlem61 46165 itcoval0mpt 48655 |
| Copyright terms: Public domain | W3C validator |