![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version |
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresid 6070 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | df-mpt 5232 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtr4i 2766 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 {copab 5210 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-res 5701 |
This theorem is referenced by: idref 7166 2fvcoidd 7317 pwfseqlem5 10701 restid2 17477 curf2ndf 18304 hofcl 18316 yonedainv 18338 smndex2dlinvh 18943 sylow1lem2 19632 sylow3lem1 19660 0frgp 19812 frgpcyg 21610 evpmodpmf1o 21632 cnmptid 23685 txswaphmeolem 23828 idnghm 24780 dvexp 26006 dvmptid 26010 mvth 26046 plyid 26263 coeidp 26318 dgrid 26319 plyremlem 26361 taylply2 26424 taylply2OLD 26425 wilthlem2 27127 ftalem7 27137 fusgrfis 29362 fzto1st1 33105 cycpm2tr 33122 zrhre 33982 qqhre 33983 fsovcnvlem 44003 fourierdlem60 46122 fourierdlem61 46123 itcoval0mpt 48516 |
Copyright terms: Public domain | W3C validator |