| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 5999 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {copab 5153 ↦ cmpt 5172 I cid 5510 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-res 5628 |
| This theorem is referenced by: idref 7079 2fvcoidd 7231 pwfseqlem5 10551 restid2 17331 curf2ndf 18150 hofcl 18162 yonedainv 18184 smndex2dlinvh 18822 sylow1lem2 19509 sylow3lem1 19537 0frgp 19689 frgpcyg 21508 evpmodpmf1o 21531 cnmptid 23574 txswaphmeolem 23717 idnghm 24656 dvexp 25882 dvmptid 25886 mvth 25922 plyid 26139 coeidp 26194 dgrid 26195 plyremlem 26237 taylply2 26300 taylply2OLD 26301 wilthlem2 27004 ftalem7 27014 fusgrfis 29306 fzto1st1 33066 cycpm2tr 33083 zrhre 34027 qqhre 34028 fsovcnvlem 44045 fourierdlem60 46203 fourierdlem61 46204 itcoval0mpt 48697 |
| Copyright terms: Public domain | W3C validator |