| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 6024 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5192 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5172 ↦ cmpt 5191 I cid 5535 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-res 5653 |
| This theorem is referenced by: idref 7121 2fvcoidd 7275 pwfseqlem5 10623 restid2 17400 curf2ndf 18215 hofcl 18227 yonedainv 18249 smndex2dlinvh 18851 sylow1lem2 19536 sylow3lem1 19564 0frgp 19716 frgpcyg 21490 evpmodpmf1o 21512 cnmptid 23555 txswaphmeolem 23698 idnghm 24638 dvexp 25864 dvmptid 25868 mvth 25904 plyid 26121 coeidp 26176 dgrid 26177 plyremlem 26219 taylply2 26282 taylply2OLD 26283 wilthlem2 26986 ftalem7 26996 fusgrfis 29264 fzto1st1 33066 cycpm2tr 33083 zrhre 34016 qqhre 34017 fsovcnvlem 44009 fourierdlem60 46171 fourierdlem61 46172 itcoval0mpt 48659 |
| Copyright terms: Public domain | W3C validator |