| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 6042 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5207 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2762 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5186 ↦ cmpt 5206 I cid 5552 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-res 5671 |
| This theorem is referenced by: idref 7141 2fvcoidd 7295 pwfseqlem5 10682 restid2 17449 curf2ndf 18264 hofcl 18276 yonedainv 18298 smndex2dlinvh 18900 sylow1lem2 19585 sylow3lem1 19613 0frgp 19765 frgpcyg 21539 evpmodpmf1o 21561 cnmptid 23604 txswaphmeolem 23747 idnghm 24687 dvexp 25914 dvmptid 25918 mvth 25954 plyid 26171 coeidp 26226 dgrid 26227 plyremlem 26269 taylply2 26332 taylply2OLD 26333 wilthlem2 27036 ftalem7 27046 fusgrfis 29314 fzto1st1 33118 cycpm2tr 33135 zrhre 34055 qqhre 34056 fsovcnvlem 44004 fourierdlem60 46162 fourierdlem61 46163 itcoval0mpt 48613 |
| Copyright terms: Public domain | W3C validator |