Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version |
Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresid 5946 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | df-mpt 5154 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {copab 5132 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: idref 7000 2fvcoidd 7149 pwfseqlem5 10350 restid2 17058 curf2ndf 17881 hofcl 17893 yonedainv 17915 smndex2dlinvh 18471 sylow1lem2 19119 sylow3lem1 19147 0frgp 19300 frgpcyg 20693 evpmodpmf1o 20713 cnmptid 22720 txswaphmeolem 22863 idnghm 23813 dvexp 25022 dvmptid 25026 mvth 25061 plyid 25275 coeidp 25329 dgrid 25330 plyremlem 25369 taylply2 25432 wilthlem2 26123 ftalem7 26133 fusgrfis 27600 fzto1st1 31271 cycpm2tr 31288 zrhre 31869 qqhre 31870 fsovcnvlem 41510 fourierdlem60 43597 fourierdlem61 43598 itcoval0mpt 45900 |
Copyright terms: Public domain | W3C validator |