| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptresid | Structured version Visualization version GIF version | ||
| Description: The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptresid | ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresid 6005 | . 2 ⊢ ( I ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 2 | df-mpt 5177 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5157 ↦ cmpt 5176 I cid 5517 ↾ cres 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-res 5635 |
| This theorem is referenced by: idref 7084 2fvcoidd 7238 pwfseqlem5 10576 restid2 17352 curf2ndf 18171 hofcl 18183 yonedainv 18205 smndex2dlinvh 18809 sylow1lem2 19496 sylow3lem1 19524 0frgp 19676 frgpcyg 21498 evpmodpmf1o 21521 cnmptid 23564 txswaphmeolem 23707 idnghm 24647 dvexp 25873 dvmptid 25877 mvth 25913 plyid 26130 coeidp 26185 dgrid 26186 plyremlem 26228 taylply2 26291 taylply2OLD 26292 wilthlem2 26995 ftalem7 27005 fusgrfis 29293 fzto1st1 33057 cycpm2tr 33074 zrhre 33985 qqhre 33986 fsovcnvlem 43986 fourierdlem60 46148 fourierdlem61 46149 itcoval0mpt 48652 |
| Copyright terms: Public domain | W3C validator |