MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsval2lem Structured version   Visualization version   GIF version

Theorem mulsval2lem 28044
Description: Lemma for mulsval2 28045. Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
mulsval2lem {𝑎 ∣ ∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝,𝑞,𝑟   𝐴,𝑠   𝐵,𝑎,𝑏,𝑝,𝑞,𝑟   𝐵,𝑠   𝑋,𝑎,𝑏,𝑝,𝑟   𝑌,𝑎,𝑏,𝑝,𝑞,𝑟   𝑌,𝑠,𝑎,𝑏,𝑞,𝑟
Allowed substitution hints:   𝑋(𝑠,𝑞)

Proof of Theorem mulsval2lem
StepHypRef Expression
1 eqeq1 2735 . . . 4 (𝑎 = 𝑏 → (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
212rexbidv 3197 . . 3 (𝑎 = 𝑏 → (∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝𝑋𝑞𝑌 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
3 oveq1 7348 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 ·s 𝐵) = (𝑟 ·s 𝐵))
43oveq1d 7356 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) = ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)))
5 oveq1 7348 . . . . . 6 (𝑝 = 𝑟 → (𝑝 ·s 𝑞) = (𝑟 ·s 𝑞))
64, 5oveq12d 7359 . . . . 5 (𝑝 = 𝑟 → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)))
76eqeq2d 2742 . . . 4 (𝑝 = 𝑟 → (𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞))))
8 oveq2 7349 . . . . . . 7 (𝑞 = 𝑠 → (𝐴 ·s 𝑞) = (𝐴 ·s 𝑠))
98oveq2d 7357 . . . . . 6 (𝑞 = 𝑠 → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) = ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)))
10 oveq2 7349 . . . . . 6 (𝑞 = 𝑠 → (𝑟 ·s 𝑞) = (𝑟 ·s 𝑠))
119, 10oveq12d 7359 . . . . 5 (𝑞 = 𝑠 → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1211eqeq2d 2742 . . . 4 (𝑞 = 𝑠 → (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)) ↔ 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
137, 12cbvrex2vw 3215 . . 3 (∃𝑝𝑋𝑞𝑌 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
142, 13bitrdi 287 . 2 (𝑎 = 𝑏 → (∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
1514cbvabv 2801 1 {𝑎 ∣ ∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wrex 3056  (class class class)co 7341   +s cadds 27897   -s csubs 27957   ·s cmuls 28040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344
This theorem is referenced by:  mulsval2  28045  mulscut  28066  mulsunif  28084
  Copyright terms: Public domain W3C validator