MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsval2lem Structured version   Visualization version   GIF version

Theorem mulsval2lem 28151
Description: Lemma for mulsval2 28152. Change bound variables in one of the cases. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
mulsval2lem {𝑎 ∣ ∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝,𝑞,𝑟   𝐴,𝑠   𝐵,𝑎,𝑏,𝑝,𝑞,𝑟   𝐵,𝑠   𝑋,𝑎,𝑏,𝑝,𝑟   𝑌,𝑎,𝑏,𝑝,𝑞,𝑟   𝑌,𝑠,𝑎,𝑏,𝑞,𝑟
Allowed substitution hints:   𝑋(𝑠,𝑞)

Proof of Theorem mulsval2lem
StepHypRef Expression
1 eqeq1 2739 . . . 4 (𝑎 = 𝑏 → (𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
212rexbidv 3220 . . 3 (𝑎 = 𝑏 → (∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑝𝑋𝑞𝑌 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))))
3 oveq1 7438 . . . . . . 7 (𝑝 = 𝑟 → (𝑝 ·s 𝐵) = (𝑟 ·s 𝐵))
43oveq1d 7446 . . . . . 6 (𝑝 = 𝑟 → ((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) = ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)))
5 oveq1 7438 . . . . . 6 (𝑝 = 𝑟 → (𝑝 ·s 𝑞) = (𝑟 ·s 𝑞))
64, 5oveq12d 7449 . . . . 5 (𝑝 = 𝑟 → (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)))
76eqeq2d 2746 . . . 4 (𝑝 = 𝑟 → (𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞))))
8 oveq2 7439 . . . . . . 7 (𝑞 = 𝑠 → (𝐴 ·s 𝑞) = (𝐴 ·s 𝑠))
98oveq2d 7447 . . . . . 6 (𝑞 = 𝑠 → ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) = ((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)))
10 oveq2 7439 . . . . . 6 (𝑞 = 𝑠 → (𝑟 ·s 𝑞) = (𝑟 ·s 𝑠))
119, 10oveq12d 7449 . . . . 5 (𝑞 = 𝑠 → (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)) = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
1211eqeq2d 2746 . . . 4 (𝑞 = 𝑠 → (𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑟 ·s 𝑞)) ↔ 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
137, 12cbvrex2vw 3240 . . 3 (∃𝑝𝑋𝑞𝑌 𝑏 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠)))
142, 13bitrdi 287 . 2 (𝑎 = 𝑏 → (∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞)) ↔ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))))
1514cbvabv 2810 1 {𝑎 ∣ ∃𝑝𝑋𝑞𝑌 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑏 ∣ ∃𝑟𝑋𝑠𝑌 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2712  wrex 3068  (class class class)co 7431   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434
This theorem is referenced by:  mulsval2  28152  mulscut  28173  mulsunif  28191
  Copyright terms: Public domain W3C validator