MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsval2 Structured version   Visualization version   GIF version

Theorem mulsval2 28014
Description: The value of surreal multiplication, expressed with fewer distinct variable conditions. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
mulsval2 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤

Proof of Theorem mulsval2
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsval 28012 . 2 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵) = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑖 ·s 𝑘))}) |s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
2 mulsval2lem 28013 . . . 4 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}
3 mulsval2lem 28013 . . . 4 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = { ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵) = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑖 ·s 𝑘))}
42, 3uneq12i 4129 . . 3 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵) = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑖 ·s 𝑘))})
5 mulsval2lem 28013 . . . 4 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))}
6 mulsval2lem 28013 . . . 4 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}
75, 6uneq12i 4129 . . 3 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})
84, 7oveq12i 7399 . 2 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝐴)∃𝑔 ∈ ( L ‘𝐵)𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵) = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑖 ·s 𝑘))}) |s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))
91, 8eqtr4di 2782 1 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3912  cfv 6511  (class class class)co 7387   No csur 27551   |s cscut 27694   L cleft 27753   R cright 27754   +s cadds 27866   -s csubs 27926   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec2 27856  df-muls 28010
This theorem is referenced by:  addsdilem2  28055  mulsasslem1  28066  mulsasslem2  28067
  Copyright terms: Public domain W3C validator