MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscut Structured version   Visualization version   GIF version

Theorem mulscut 28092
Description: Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
mulscut.1 (𝜑𝐴 No )
mulscut.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscut (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscut
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscut.1 . . 3 (𝜑𝐴 No )
2 mulscut.2 . . 3 (𝜑𝐵 No )
31, 2mulscutlem 28091 . 2 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
4 biid 261 . . 3 ((𝐴 ·s 𝐵) ∈ No ↔ (𝐴 ·s 𝐵) ∈ No )
5 mulsval2lem 28070 . . . . 5 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))}
6 mulsval2lem 28070 . . . . 5 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}
75, 6uneq12i 4146 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))})
87breq1i 5131 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ↔ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)})
9 mulsval2lem 28070 . . . . 5 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))}
10 mulsval2lem 28070 . . . . 5 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}
119, 10uneq12i 4146 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})
1211breq2i 5132 . . 3 ({(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))
134, 8, 123anbi123i 1155 . 2 (((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
143, 13sylibr 234 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  cun 3929  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410   No csur 27608   <<s csslt 27749   L cleft 27810   R cright 27811   +s cadds 27923   -s csubs 27983   ·s cmuls 28066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067
This theorem is referenced by:  mulscut2  28093
  Copyright terms: Public domain W3C validator