MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscut Structured version   Visualization version   GIF version

Theorem mulscut 28071
Description: Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
mulscut.1 (𝜑𝐴 No )
mulscut.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscut (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscut
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscut.1 . . 3 (𝜑𝐴 No )
2 mulscut.2 . . 3 (𝜑𝐵 No )
31, 2mulscutlem 28070 . 2 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
4 biid 261 . . 3 ((𝐴 ·s 𝐵) ∈ No ↔ (𝐴 ·s 𝐵) ∈ No )
5 mulsval2lem 28049 . . . . 5 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))}
6 mulsval2lem 28049 . . . . 5 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}
75, 6uneq12i 4113 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))})
87breq1i 5096 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ↔ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)})
9 mulsval2lem 28049 . . . . 5 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))}
10 mulsval2lem 28049 . . . . 5 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}
119, 10uneq12i 4113 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})
1211breq2i 5097 . . 3 ({(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))
134, 8, 123anbi123i 1155 . 2 (((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
143, 13sylibr 234 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  cun 3895  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346   No csur 27578   <<s csslt 27720   L cleft 27786   R cright 27787   +s cadds 27902   -s csubs 27962   ·s cmuls 28045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046
This theorem is referenced by:  mulscut2  28072
  Copyright terms: Public domain W3C validator