MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscut Structured version   Visualization version   GIF version

Theorem mulscut 28041
Description: Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
mulscut.1 (𝜑𝐴 No )
mulscut.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscut (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscut
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscut.1 . . 3 (𝜑𝐴 No )
2 mulscut.2 . . 3 (𝜑𝐵 No )
31, 2mulscutlem 28040 . 2 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
4 biid 261 . . 3 ((𝐴 ·s 𝐵) ∈ No ↔ (𝐴 ·s 𝐵) ∈ No )
5 mulsval2lem 28019 . . . . 5 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))}
6 mulsval2lem 28019 . . . . 5 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}
75, 6uneq12i 4131 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))})
87breq1i 5116 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ↔ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)})
9 mulsval2lem 28019 . . . . 5 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))}
10 mulsval2lem 28019 . . . . 5 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}
119, 10uneq12i 4131 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})
1211breq2i 5117 . . 3 ({(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))
134, 8, 123anbi123i 1155 . 2 (((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
143, 13sylibr 234 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  cun 3914  {csn 4591   class class class wbr 5109  cfv 6513  (class class class)co 7389   No csur 27557   <<s csslt 27698   L cleft 27759   R cright 27760   +s cadds 27872   -s csubs 27932   ·s cmuls 28015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-1o 8436  df-2o 8437  df-nadd 8632  df-no 27560  df-slt 27561  df-bday 27562  df-sle 27663  df-sslt 27699  df-scut 27701  df-0s 27742  df-made 27761  df-old 27762  df-left 27764  df-right 27765  df-norec 27851  df-norec2 27862  df-adds 27873  df-negs 27933  df-subs 27934  df-muls 28016
This theorem is referenced by:  mulscut2  28042
  Copyright terms: Public domain W3C validator