MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulscut Structured version   Visualization version   GIF version

Theorem mulscut 28075
Description: Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025.)
Hypotheses
Ref Expression
mulscut.1 (𝜑𝐴 No )
mulscut.2 (𝜑𝐵 No )
Assertion
Ref Expression
mulscut (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulscut
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscut.1 . . 3 (𝜑𝐴 No )
2 mulscut.2 . . 3 (𝜑𝐵 No )
31, 2mulscutlem 28074 . 2 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
4 biid 261 . . 3 ((𝐴 ·s 𝐵) ∈ No ↔ (𝐴 ·s 𝐵) ∈ No )
5 mulsval2lem 28053 . . . . 5 {𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))}
6 mulsval2lem 28053 . . . . 5 {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}
75, 6uneq12i 4125 . . . 4 ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))})
87breq1i 5109 . . 3 (({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ↔ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)})
9 mulsval2lem 28053 . . . . 5 {𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))}
10 mulsval2lem 28053 . . . . 5 {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}
119, 10uneq12i 4125 . . . 4 ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})
1211breq2i 5110 . . 3 ({(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) ↔ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))}))
134, 8, 123anbi123i 1155 . 2 (((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) ↔ ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑓 ∣ ∃𝑔 ∈ ( L ‘𝐴)∃ ∈ ( L ‘𝐵)𝑓 = (((𝑔 ·s 𝐵) +s (𝐴 ·s )) -s (𝑔 ·s ))} ∪ {𝑖 ∣ ∃𝑗 ∈ ( R ‘𝐴)∃𝑘 ∈ ( R ‘𝐵)𝑖 = (((𝑗 ·s 𝐵) +s (𝐴 ·s 𝑘)) -s (𝑗 ·s 𝑘))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑙 ∣ ∃𝑚 ∈ ( L ‘𝐴)∃𝑛 ∈ ( R ‘𝐵)𝑙 = (((𝑚 ·s 𝐵) +s (𝐴 ·s 𝑛)) -s (𝑚 ·s 𝑛))} ∪ {𝑜 ∣ ∃𝑥 ∈ ( R ‘𝐴)∃𝑦 ∈ ( L ‘𝐵)𝑜 = (((𝑥 ·s 𝐵) +s (𝐴 ·s 𝑦)) -s (𝑥 ·s 𝑦))})))
143, 13sylibr 234 1 (𝜑 → ((𝐴 ·s 𝐵) ∈ No ∧ ({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝐴)∃𝑞 ∈ ( L ‘𝐵)𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝐴)∃𝑠 ∈ ( R ‘𝐵)𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) <<s {(𝐴 ·s 𝐵)} ∧ {(𝐴 ·s 𝐵)} <<s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝐴)∃𝑢 ∈ ( R ‘𝐵)𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝐴)∃𝑤 ∈ ( L ‘𝐵)𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  cun 3909  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369   No csur 27584   <<s csslt 27726   L cleft 27790   R cright 27791   +s cadds 27906   -s csubs 27966   ·s cmuls 28049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-muls 28050
This theorem is referenced by:  mulscut2  28076
  Copyright terms: Public domain W3C validator