| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsunif | Structured version Visualization version GIF version | ||
| Description: Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsunif.1 | ⊢ (𝜑 → 𝐿 <<s 𝑅) |
| mulsunif.2 | ⊢ (𝜑 → 𝑀 <<s 𝑆) |
| mulsunif.3 | ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
| mulsunif.4 | ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
| Ref | Expression |
|---|---|
| mulsunif | ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulsunif.1 | . . 3 ⊢ (𝜑 → 𝐿 <<s 𝑅) | |
| 2 | mulsunif.2 | . . 3 ⊢ (𝜑 → 𝑀 <<s 𝑆) | |
| 3 | mulsunif.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | |
| 4 | mulsunif.4 | . . 3 ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | |
| 5 | 1, 2, 3, 4 | mulsuniflem 28110 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}))) |
| 6 | mulsval2lem 28071 | . . . 4 ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} | |
| 7 | mulsval2lem 28071 | . . . 4 ⊢ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))} | |
| 8 | 6, 7 | uneq12i 4146 | . . 3 ⊢ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |
| 9 | mulsval2lem 28071 | . . . 4 ⊢ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} | |
| 10 | mulsval2lem 28071 | . . . 4 ⊢ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))} | |
| 11 | 9, 10 | uneq12i 4146 | . . 3 ⊢ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}) |
| 12 | 8, 11 | oveq12i 7424 | . 2 ⊢ (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})) |
| 13 | 5, 12 | eqtr4di 2787 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {cab 2712 ∃wrex 3059 ∪ cun 3929 class class class wbr 5123 (class class class)co 7412 <<s csslt 27760 |s cscut 27762 +s cadds 27927 -s csubs 27987 ·s cmuls 28067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-2o 8488 df-nadd 8685 df-no 27622 df-slt 27623 df-bday 27624 df-sle 27725 df-sslt 27761 df-scut 27763 df-0s 27804 df-made 27821 df-old 27822 df-left 27824 df-right 27825 df-norec 27906 df-norec2 27917 df-adds 27928 df-negs 27988 df-subs 27989 df-muls 28068 |
| This theorem is referenced by: addsdilem1 28112 mulsasslem1 28124 mulsasslem2 28125 mulsunif2lem 28130 precsexlem11 28176 onmulscl 28222 |
| Copyright terms: Public domain | W3C validator |