MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsunif Structured version   Visualization version   GIF version

Theorem mulsunif 28076
Description: Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.)
Hypotheses
Ref Expression
mulsunif.1 (𝜑𝐿 <<s 𝑅)
mulsunif.2 (𝜑𝑀 <<s 𝑆)
mulsunif.3 (𝜑𝐴 = (𝐿 |s 𝑅))
mulsunif.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
mulsunif (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤   𝐿,𝑎,𝑝   𝐿,𝑐,𝑡   𝑀,𝑎,𝑝,𝑞   𝑀,𝑑,𝑣,𝑤   𝑅,𝑏   𝑅,𝑑   𝑅,𝑟   𝑣,𝑅   𝑆,𝑏   𝑆,𝑐   𝑆,𝑟,𝑠   𝑡,𝑆,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝑅(𝑤,𝑢,𝑡,𝑠,𝑞,𝑝,𝑎,𝑐)   𝑆(𝑤,𝑣,𝑞,𝑝,𝑎,𝑑)   𝐿(𝑤,𝑣,𝑢,𝑠,𝑟,𝑞,𝑏,𝑑)   𝑀(𝑢,𝑡,𝑠,𝑟,𝑏,𝑐)

Proof of Theorem mulsunif
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsunif.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 mulsunif.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 mulsunif.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 mulsunif.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4mulsuniflem 28075 . 2 (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓𝐿𝑔𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖𝑅𝑗𝑆 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙𝐿𝑚𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜𝑅𝑥𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})))
6 mulsval2lem 28036 . . . 4 {𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓𝐿𝑔𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))}
7 mulsval2lem 28036 . . . 4 {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = { ∣ ∃𝑖𝑅𝑗𝑆 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}
86, 7uneq12i 4119 . . 3 ({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓𝐿𝑔𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖𝑅𝑗𝑆 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))})
9 mulsval2lem 28036 . . . 4 {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑘 ∣ ∃𝑙𝐿𝑚𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))}
10 mulsval2lem 28036 . . . 4 {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑛 ∣ ∃𝑜𝑅𝑥𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}
119, 10uneq12i 4119 . . 3 ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑘 ∣ ∃𝑙𝐿𝑚𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜𝑅𝑥𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})
128, 11oveq12i 7365 . 2 (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓𝐿𝑔𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ { ∣ ∃𝑖𝑅𝑗𝑆 = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙𝐿𝑚𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜𝑅𝑥𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}))
135, 12eqtr4di 2782 1 (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2707  wrex 3053  cun 3903   class class class wbr 5095  (class class class)co 7353   <<s csslt 27709   |s cscut 27711   +s cadds 27889   -s csubs 27949   ·s cmuls 28032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033
This theorem is referenced by:  addsdilem1  28077  mulsasslem1  28089  mulsasslem2  28090  mulsunif2lem  28095  precsexlem11  28142  onmulscl  28198
  Copyright terms: Public domain W3C validator