![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulsunif | Structured version Visualization version GIF version |
Description: Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
Ref | Expression |
---|---|
mulsunif.1 | ⊢ (𝜑 → 𝐿 <<s 𝑅) |
mulsunif.2 | ⊢ (𝜑 → 𝑀 <<s 𝑆) |
mulsunif.3 | ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
mulsunif.4 | ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
Ref | Expression |
---|---|
mulsunif | ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulsunif.1 | . . 3 ⊢ (𝜑 → 𝐿 <<s 𝑅) | |
2 | mulsunif.2 | . . 3 ⊢ (𝜑 → 𝑀 <<s 𝑆) | |
3 | mulsunif.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | |
4 | mulsunif.4 | . . 3 ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | |
5 | 1, 2, 3, 4 | mulsuniflem 27533 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}))) |
6 | mulsval2lem 27495 | . . . 4 ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} | |
7 | mulsval2lem 27495 | . . . 4 ⊢ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))} | |
8 | 6, 7 | uneq12i 4158 | . . 3 ⊢ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |
9 | mulsval2lem 27495 | . . . 4 ⊢ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} | |
10 | mulsval2lem 27495 | . . . 4 ⊢ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))} | |
11 | 9, 10 | uneq12i 4158 | . . 3 ⊢ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}) |
12 | 8, 11 | oveq12i 7406 | . 2 ⊢ (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})) |
13 | 5, 12 | eqtr4di 2790 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∃wrex 3070 ∪ cun 3943 class class class wbr 5142 (class class class)co 7394 <<s csslt 27211 |s cscut 27213 +s cadds 27372 -s csubs 27424 ·s cmuls 27491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7959 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-1o 8450 df-2o 8451 df-nadd 8650 df-no 27075 df-slt 27076 df-bday 27077 df-sle 27177 df-sslt 27212 df-scut 27214 df-0s 27254 df-made 27271 df-old 27272 df-left 27274 df-right 27275 df-norec 27351 df-norec2 27362 df-adds 27373 df-negs 27425 df-subs 27426 df-muls 27492 |
This theorem is referenced by: addsdilem1 27535 mulsasslem1 27547 mulsasslem2 27548 precsexlem11 27592 |
Copyright terms: Public domain | W3C validator |