| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsunif | Structured version Visualization version GIF version | ||
| Description: Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsunif.1 | ⊢ (𝜑 → 𝐿 <<s 𝑅) |
| mulsunif.2 | ⊢ (𝜑 → 𝑀 <<s 𝑆) |
| mulsunif.3 | ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
| mulsunif.4 | ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
| Ref | Expression |
|---|---|
| mulsunif | ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulsunif.1 | . . 3 ⊢ (𝜑 → 𝐿 <<s 𝑅) | |
| 2 | mulsunif.2 | . . 3 ⊢ (𝜑 → 𝑀 <<s 𝑆) | |
| 3 | mulsunif.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | |
| 4 | mulsunif.4 | . . 3 ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | |
| 5 | 1, 2, 3, 4 | mulsuniflem 28089 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}))) |
| 6 | mulsval2lem 28050 | . . . 4 ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} | |
| 7 | mulsval2lem 28050 | . . . 4 ⊢ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))} | |
| 8 | 6, 7 | uneq12i 4115 | . . 3 ⊢ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |
| 9 | mulsval2lem 28050 | . . . 4 ⊢ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} | |
| 10 | mulsval2lem 28050 | . . . 4 ⊢ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))} | |
| 11 | 9, 10 | uneq12i 4115 | . . 3 ⊢ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}) |
| 12 | 8, 11 | oveq12i 7364 | . 2 ⊢ (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})) |
| 13 | 5, 12 | eqtr4di 2786 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2711 ∃wrex 3057 ∪ cun 3896 class class class wbr 5093 (class class class)co 7352 <<s csslt 27721 |s cscut 27723 +s cadds 27903 -s csubs 27963 ·s cmuls 28046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-subs 27965 df-muls 28047 |
| This theorem is referenced by: addsdilem1 28091 mulsasslem1 28103 mulsasslem2 28104 mulsunif2lem 28109 precsexlem11 28156 onmulscl 28212 |
| Copyright terms: Public domain | W3C validator |