| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulsunif | Structured version Visualization version GIF version | ||
| Description: Surreal multiplication has the uniformity property. That is, any cuts that define 𝐴 and 𝐵 can be used in the definition of (𝐴 ·s 𝐵). Theorem 3.5 of [Gonshor] p. 18. (Contributed by Scott Fenton, 7-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulsunif.1 | ⊢ (𝜑 → 𝐿 <<s 𝑅) |
| mulsunif.2 | ⊢ (𝜑 → 𝑀 <<s 𝑆) |
| mulsunif.3 | ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
| mulsunif.4 | ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
| Ref | Expression |
|---|---|
| mulsunif | ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulsunif.1 | . . 3 ⊢ (𝜑 → 𝐿 <<s 𝑅) | |
| 2 | mulsunif.2 | . . 3 ⊢ (𝜑 → 𝑀 <<s 𝑆) | |
| 3 | mulsunif.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) | |
| 4 | mulsunif.4 | . . 3 ⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) | |
| 5 | 1, 2, 3, 4 | mulsuniflem 28086 | . 2 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}))) |
| 6 | mulsval2lem 28047 | . . . 4 ⊢ {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} = {𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} | |
| 7 | mulsval2lem 28047 | . . . 4 ⊢ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))} = {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))} | |
| 8 | 6, 7 | uneq12i 4116 | . . 3 ⊢ ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) = ({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |
| 9 | mulsval2lem 28047 | . . . 4 ⊢ {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} = {𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} | |
| 10 | mulsval2lem 28047 | . . . 4 ⊢ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))} = {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))} | |
| 11 | 9, 10 | uneq12i 4116 | . . 3 ⊢ ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}) = ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))}) |
| 12 | 8, 11 | oveq12i 7358 | . 2 ⊢ (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))})) = (({𝑒 ∣ ∃𝑓 ∈ 𝐿 ∃𝑔 ∈ 𝑀 𝑒 = (((𝑓 ·s 𝐵) +s (𝐴 ·s 𝑔)) -s (𝑓 ·s 𝑔))} ∪ {ℎ ∣ ∃𝑖 ∈ 𝑅 ∃𝑗 ∈ 𝑆 ℎ = (((𝑖 ·s 𝐵) +s (𝐴 ·s 𝑗)) -s (𝑖 ·s 𝑗))}) |s ({𝑘 ∣ ∃𝑙 ∈ 𝐿 ∃𝑚 ∈ 𝑆 𝑘 = (((𝑙 ·s 𝐵) +s (𝐴 ·s 𝑚)) -s (𝑙 ·s 𝑚))} ∪ {𝑛 ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑛 = (((𝑜 ·s 𝐵) +s (𝐴 ·s 𝑥)) -s (𝑜 ·s 𝑥))})) |
| 13 | 5, 12 | eqtr4di 2784 | 1 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = (((𝑝 ·s 𝐵) +s (𝐴 ·s 𝑞)) -s (𝑝 ·s 𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = (((𝑟 ·s 𝐵) +s (𝐴 ·s 𝑠)) -s (𝑟 ·s 𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = (((𝑡 ·s 𝐵) +s (𝐴 ·s 𝑢)) -s (𝑡 ·s 𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = (((𝑣 ·s 𝐵) +s (𝐴 ·s 𝑤)) -s (𝑣 ·s 𝑤))}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∃wrex 3056 ∪ cun 3900 class class class wbr 5091 (class class class)co 7346 <<s csslt 27718 |s cscut 27720 +s cadds 27900 -s csubs 27960 ·s cmuls 28043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 df-muls 28044 |
| This theorem is referenced by: addsdilem1 28088 mulsasslem1 28100 mulsasslem2 28101 mulsunif2lem 28106 precsexlem11 28153 onmulscl 28209 |
| Copyright terms: Public domain | W3C validator |