MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdifsupp Structured version   Visualization version   GIF version

Theorem fvdifsupp 8127
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
fvdifsupp.1 (𝜑𝐹 Fn 𝐴)
fvdifsupp.2 (𝜑𝐴𝑉)
fvdifsupp.3 (𝜑𝑍𝑊)
fvdifsupp.4 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
Assertion
Ref Expression
fvdifsupp (𝜑 → (𝐹𝑋) = 𝑍)

Proof of Theorem fvdifsupp
StepHypRef Expression
1 fvdifsupp.4 . . 3 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
21eldifbd 3924 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍))
31eldifad 3923 . . . 4 (𝜑𝑋𝐴)
4 fvdifsupp.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
5 fvdifsupp.2 . . . . 5 (𝜑𝐴𝑉)
6 fvdifsupp.3 . . . . 5 (𝜑𝑍𝑊)
7 elsuppfn 8126 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
84, 5, 6, 7syl3anc 1373 . . . 4 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
93, 8mpbirand 707 . . 3 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑋) ≠ 𝑍))
109necon2bbid 2968 . 2 (𝜑 → ((𝐹𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍)))
112, 10mpbird 257 1 (𝜑 → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908   Fn wfn 6494  cfv 6499  (class class class)co 7369   supp csupp 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117
This theorem is referenced by:  evls1fpws  22289  fdifsuppconst  32662  gsumfs2d  33038  elrgspnlem1  33209  elrgspnlem2  33210  elrgspnlem4  33212  elrgspnsubrunlem1  33214  elrgspnsubrunlem2  33215  elrspunidl  33392  elrspunsn  33393  rprmdvdsprod  33498  fldextrspunlsplem  33661  fldextrspunlsp  33662
  Copyright terms: Public domain W3C validator