| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvdifsupp | Structured version Visualization version GIF version | ||
| Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| Ref | Expression |
|---|---|
| fvdifsupp.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| fvdifsupp.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fvdifsupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| fvdifsupp.4 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) |
| Ref | Expression |
|---|---|
| fvdifsupp | ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvdifsupp.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) | |
| 2 | 1 | eldifbd 3924 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍)) |
| 3 | 1 | eldifad 3923 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 4 | fvdifsupp.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | fvdifsupp.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | fvdifsupp.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 7 | elsuppfn 8126 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
| 9 | 3, 8 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑋) ≠ 𝑍)) |
| 10 | 9 | necon2bbid 2968 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍))) |
| 11 | 2, 10 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3908 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: evls1fpws 22289 fdifsuppconst 32662 gsumfs2d 33038 elrgspnlem1 33209 elrgspnlem2 33210 elrgspnlem4 33212 elrgspnsubrunlem1 33214 elrgspnsubrunlem2 33215 elrspunidl 33392 elrspunsn 33393 rprmdvdsprod 33498 fldextrspunlsplem 33661 fldextrspunlsp 33662 |
| Copyright terms: Public domain | W3C validator |