MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdifsupp Structured version   Visualization version   GIF version

Theorem fvdifsupp 8153
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
fvdifsupp.1 (𝜑𝐹 Fn 𝐴)
fvdifsupp.2 (𝜑𝐴𝑉)
fvdifsupp.3 (𝜑𝑍𝑊)
fvdifsupp.4 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
Assertion
Ref Expression
fvdifsupp (𝜑 → (𝐹𝑋) = 𝑍)

Proof of Theorem fvdifsupp
StepHypRef Expression
1 fvdifsupp.4 . . 3 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
21eldifbd 3930 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍))
31eldifad 3929 . . . 4 (𝜑𝑋𝐴)
4 fvdifsupp.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
5 fvdifsupp.2 . . . . 5 (𝜑𝐴𝑉)
6 fvdifsupp.3 . . . . 5 (𝜑𝑍𝑊)
7 elsuppfn 8152 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
84, 5, 6, 7syl3anc 1373 . . . 4 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
93, 8mpbirand 707 . . 3 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑋) ≠ 𝑍))
109necon2bbid 2969 . 2 (𝜑 → ((𝐹𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍)))
112, 10mpbird 257 1 (𝜑 → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914   Fn wfn 6509  cfv 6514  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  evls1fpws  22263  fdifsuppconst  32619  gsumfs2d  33002  elrgspnlem1  33200  elrgspnlem2  33201  elrgspnlem4  33203  elrgspnsubrunlem1  33205  elrgspnsubrunlem2  33206  elrspunidl  33406  elrspunsn  33407  rprmdvdsprod  33512  fldextrspunlsplem  33675  fldextrspunlsp  33676
  Copyright terms: Public domain W3C validator