MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvdifsupp Structured version   Visualization version   GIF version

Theorem fvdifsupp 8212
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
fvdifsupp.1 (𝜑𝐹 Fn 𝐴)
fvdifsupp.2 (𝜑𝐴𝑉)
fvdifsupp.3 (𝜑𝑍𝑊)
fvdifsupp.4 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
Assertion
Ref Expression
fvdifsupp (𝜑 → (𝐹𝑋) = 𝑍)

Proof of Theorem fvdifsupp
StepHypRef Expression
1 fvdifsupp.4 . . 3 (𝜑𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍)))
21eldifbd 3989 . 2 (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍))
31eldifad 3988 . . . 4 (𝜑𝑋𝐴)
4 fvdifsupp.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
5 fvdifsupp.2 . . . . 5 (𝜑𝐴𝑉)
6 fvdifsupp.3 . . . . 5 (𝜑𝑍𝑊)
7 elsuppfn 8211 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
84, 5, 6, 7syl3anc 1371 . . . 4 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋𝐴 ∧ (𝐹𝑋) ≠ 𝑍)))
93, 8mpbirand 706 . . 3 (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹𝑋) ≠ 𝑍))
109necon2bbid 2990 . 2 (𝜑 → ((𝐹𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍)))
112, 10mpbird 257 1 (𝜑 → (𝐹𝑋) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  evls1fpws  22394  fdifsuppconst  32701  elrspunidl  33421  elrspunsn  33422  rprmdvdsprod  33527
  Copyright terms: Public domain W3C validator