Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvdifsupp | Structured version Visualization version GIF version |
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
fvdifsupp.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvdifsupp.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvdifsupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fvdifsupp.4 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) |
Ref | Expression |
---|---|
fvdifsupp | ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvdifsupp.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) | |
2 | 1 | eldifbd 3879 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍)) |
3 | 1 | eldifad 3878 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
4 | fvdifsupp.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | fvdifsupp.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | fvdifsupp.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
7 | elsuppfn 7913 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
8 | 4, 5, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
9 | 3, 8 | mpbirand 707 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑋) ≠ 𝑍)) |
10 | 9 | necon2bbid 2984 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍))) |
11 | 2, 10 | mpbird 260 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∖ cdif 3863 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 supp csupp 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-supp 7904 |
This theorem is referenced by: fdifsuppconst 30743 elrspunidl 31320 |
Copyright terms: Public domain | W3C validator |