![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvdifsupp | Structured version Visualization version GIF version |
Description: Function value is zero outside of its support. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
fvdifsupp.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fvdifsupp.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fvdifsupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
fvdifsupp.4 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) |
Ref | Expression |
---|---|
fvdifsupp | ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvdifsupp.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∖ (𝐹 supp 𝑍))) | |
2 | 1 | eldifbd 3989 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝐹 supp 𝑍)) |
3 | 1 | eldifad 3988 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
4 | fvdifsupp.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | fvdifsupp.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | fvdifsupp.3 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
7 | elsuppfn 8211 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) | |
8 | 4, 5, 6, 7 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝑋 ∈ 𝐴 ∧ (𝐹‘𝑋) ≠ 𝑍))) |
9 | 3, 8 | mpbirand 706 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐹 supp 𝑍) ↔ (𝐹‘𝑋) ≠ 𝑍)) |
10 | 9 | necon2bbid 2990 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋) = 𝑍 ↔ ¬ 𝑋 ∈ (𝐹 supp 𝑍))) |
11 | 2, 10 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹‘𝑋) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: evls1fpws 22394 fdifsuppconst 32701 elrspunidl 33421 elrspunsn 33422 rprmdvdsprod 33527 |
Copyright terms: Public domain | W3C validator |