MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceq0 Structured version   Visualization version   GIF version

Theorem pceq0 16199
Description: There are zero powers of a prime 𝑃 in 𝑁 iff 𝑃 does not divide 𝑁. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pceq0 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) = 0 ↔ ¬ 𝑃𝑁))

Proof of Theorem pceq0
StepHypRef Expression
1 pcelnn 16198 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
2 pccl 16178 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0)
3 nnne0 11663 . . . . 5 ((𝑃 pCnt 𝑁) ∈ ℕ → (𝑃 pCnt 𝑁) ≠ 0)
4 elnn0 11891 . . . . . . . 8 ((𝑃 pCnt 𝑁) ∈ ℕ0 ↔ ((𝑃 pCnt 𝑁) ∈ ℕ ∨ (𝑃 pCnt 𝑁) = 0))
54biimpi 217 . . . . . . 7 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) ∈ ℕ ∨ (𝑃 pCnt 𝑁) = 0))
65ord 860 . . . . . 6 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (¬ (𝑃 pCnt 𝑁) ∈ ℕ → (𝑃 pCnt 𝑁) = 0))
76necon1ad 3037 . . . . 5 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) ≠ 0 → (𝑃 pCnt 𝑁) ∈ ℕ))
83, 7impbid2 227 . . . 4 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ (𝑃 pCnt 𝑁) ≠ 0))
92, 8syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ (𝑃 pCnt 𝑁) ≠ 0))
101, 9bitr3d 282 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃𝑁 ↔ (𝑃 pCnt 𝑁) ≠ 0))
1110necon2bbid 3063 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) = 0 ↔ ¬ 𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2106  wne 3020   class class class wbr 5062  (class class class)co 7151  0cc0 10529  cn 11630  0cn0 11889  cdvds 15599  cprime 16007   pCnt cpc 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166
This theorem is referenced by:  pcprmpw2  16210  pcaddlem  16216  pcmpt  16220  pcprod  16223  prmreclem2  16245  pgpfi  18652  sylow2alem2  18665  ablfac1c  19115  pgpfac1lem3a  19120  isppw2  25606  chtublem  25701  bposlem3  25776  lgsval2lem  25797  lgsmod  25813  lgsdilem2  25823  lgsne0  25825  ostth3  26128
  Copyright terms: Public domain W3C validator