| Step | Hyp | Ref
| Expression |
| 1 | | pmtrrn.t |
. . . . . . 7
⊢ 𝑇 = (pmTrsp‘𝐷) |
| 2 | | pmtrrn.r |
. . . . . . 7
⊢ 𝑅 = ran 𝑇 |
| 3 | | eqid 2736 |
. . . . . . 7
⊢ dom
(𝐹 ∖ I ) = dom (𝐹 ∖ I ) |
| 4 | 1, 2, 3 | pmtrfrn 19444 |
. . . . . 6
⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧
𝐹 = (𝑇‘dom (𝐹 ∖ I )))) |
| 5 | 4 | simpld 494 |
. . . . 5
⊢ (𝐹 ∈ 𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈
2o)) |
| 6 | 1 | pmtrf 19441 |
. . . . 5
⊢ ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) →
(𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝐹 ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷) |
| 8 | 4 | simprd 495 |
. . . . 5
⊢ (𝐹 ∈ 𝑅 → 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) |
| 9 | 8 | feq1d 6695 |
. . . 4
⊢ (𝐹 ∈ 𝑅 → (𝐹:𝐷⟶𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷⟶𝐷)) |
| 10 | 7, 9 | mpbird 257 |
. . 3
⊢ (𝐹 ∈ 𝑅 → 𝐹:𝐷⟶𝐷) |
| 11 | | fco 6735 |
. . . 4
⊢ ((𝐹:𝐷⟶𝐷 ∧ 𝐹:𝐷⟶𝐷) → (𝐹 ∘ 𝐹):𝐷⟶𝐷) |
| 12 | 11 | anidms 566 |
. . 3
⊢ (𝐹:𝐷⟶𝐷 → (𝐹 ∘ 𝐹):𝐷⟶𝐷) |
| 13 | | ffn 6711 |
. . 3
⊢ ((𝐹 ∘ 𝐹):𝐷⟶𝐷 → (𝐹 ∘ 𝐹) Fn 𝐷) |
| 14 | 10, 12, 13 | 3syl 18 |
. 2
⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) Fn 𝐷) |
| 15 | | fnresi 6672 |
. . 3
⊢ ( I
↾ 𝐷) Fn 𝐷 |
| 16 | 15 | a1i 11 |
. 2
⊢ (𝐹 ∈ 𝑅 → ( I ↾ 𝐷) Fn 𝐷) |
| 17 | 1, 2, 3 | pmtrffv 19445 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) = if(𝑥 ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{𝑥}), 𝑥)) |
| 18 | | iftrue 4511 |
. . . . . . 7
⊢ (𝑥 ∈ dom (𝐹 ∖ I ) → if(𝑥 ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{𝑥}), 𝑥) = ∪ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 19 | 17, 18 | sylan9eq 2791 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑥) = ∪ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 20 | 19 | fveq2d 6885 |
. . . . 5
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘∪ (dom
(𝐹 ∖ I ) ∖
{𝑥}))) |
| 21 | | simpll 766 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝐹 ∈ 𝑅) |
| 22 | 5 | simp2d 1143 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷) |
| 23 | 22 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ⊆ 𝐷) |
| 24 | | 1onn 8657 |
. . . . . . . . . . 11
⊢
1o ∈ ω |
| 25 | 5 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈
2o) |
| 26 | | df-2o 8486 |
. . . . . . . . . . . . 13
⊢
2o = suc 1o |
| 27 | 25, 26 | breqtrdi 5165 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ 𝑅 → dom (𝐹 ∖ I ) ≈ suc
1o) |
| 28 | 27 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc
1o) |
| 29 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I )) |
| 30 | | dif1ennn 9180 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ dom (𝐹 ∖ I ) ≈ suc 1o ∧
𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈
1o) |
| 31 | 24, 28, 29, 30 | mp3an2i 1468 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o) |
| 32 | | en1uniel 9048 |
. . . . . . . . . 10
⊢ ((dom
(𝐹 ∖ I ) ∖
{𝑥}) ≈ 1o
→ ∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → ∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥})) |
| 34 | 33 | eldifad 3943 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → ∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I )) |
| 35 | 23, 34 | sseldd 3964 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → ∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷) |
| 36 | 1, 2, 3 | pmtrffv 19445 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑅 ∧ ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥}) ∈ 𝐷) → (𝐹‘∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = if(∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}), ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥}))) |
| 37 | 21, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = if(∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}), ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥}))) |
| 38 | | iftrue 4511 |
. . . . . . . 8
⊢ (∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ) → if(∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}), ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = ∪ (dom (𝐹 ∖ I ) ∖ {∪ (dom (𝐹 ∖ I ) ∖ {𝑥})})) |
| 39 | 34, 38 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if(∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}), ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = ∪ (dom (𝐹 ∖ I ) ∖ {∪ (dom (𝐹 ∖ I ) ∖ {𝑥})})) |
| 40 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → dom (𝐹 ∖ I ) ≈
2o) |
| 41 | | en2other2 10028 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) →
∪ (dom (𝐹 ∖ I ) ∖ {∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥) |
| 42 | 41 | ancoms 458 |
. . . . . . . 8
⊢ ((dom
(𝐹 ∖ I ) ≈
2o ∧ 𝑥
∈ dom (𝐹 ∖ I ))
→ ∪ (dom (𝐹 ∖ I ) ∖ {∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥) |
| 43 | 40, 42 | sylan 580 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → ∪ (dom (𝐹 ∖ I ) ∖ {∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥) |
| 44 | 39, 43 | eqtrd 2771 |
. . . . . 6
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if(∪ (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), ∪
(dom (𝐹 ∖ I ) ∖
{∪ (dom (𝐹 ∖ I ) ∖ {𝑥})}), ∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = 𝑥) |
| 45 | 37, 44 | eqtrd 2771 |
. . . . 5
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘∪ (dom
(𝐹 ∖ I ) ∖
{𝑥})) = 𝑥) |
| 46 | 20, 45 | eqtrd 2771 |
. . . 4
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 47 | 10 | ffnd 6712 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝑅 → 𝐹 Fn 𝐷) |
| 48 | | fnelnfp 7174 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 49 | 47, 48 | sylan 580 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹‘𝑥) ≠ 𝑥)) |
| 50 | 49 | necon2bbid 2976 |
. . . . . 6
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → ((𝐹‘𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐹 ∖ I ))) |
| 51 | 50 | biimpar 477 |
. . . . 5
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘𝑥) = 𝑥) |
| 52 | | fveq2 6881 |
. . . . . 6
⊢ ((𝐹‘𝑥) = 𝑥 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 53 | | id 22 |
. . . . . 6
⊢ ((𝐹‘𝑥) = 𝑥 → (𝐹‘𝑥) = 𝑥) |
| 54 | 52, 53 | eqtrd 2771 |
. . . . 5
⊢ ((𝐹‘𝑥) = 𝑥 → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 55 | 51, 54 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 56 | 46, 55 | pm2.61dan 812 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
| 57 | | fvco2 6981 |
. . . 4
⊢ ((𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐹)‘𝑥) = (𝐹‘(𝐹‘𝑥))) |
| 58 | 47, 57 | sylan 580 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐹)‘𝑥) = (𝐹‘(𝐹‘𝑥))) |
| 59 | | fvresi 7170 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → (( I ↾ 𝐷)‘𝑥) = 𝑥) |
| 60 | 59 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → (( I ↾ 𝐷)‘𝑥) = 𝑥) |
| 61 | 56, 58, 60 | 3eqtr4d 2781 |
. 2
⊢ ((𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐹)‘𝑥) = (( I ↾ 𝐷)‘𝑥)) |
| 62 | 14, 16, 61 | eqfnfvd 7029 |
1
⊢ (𝐹 ∈ 𝑅 → (𝐹 ∘ 𝐹) = ( I ↾ 𝐷)) |