MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfinv Structured version   Visualization version   GIF version

Theorem pmtrfinv 18518
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfinv (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))

Proof of Theorem pmtrfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2818 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 18515 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 495 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
61pmtrf 18512 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
75, 6syl 17 . . . 4 (𝐹𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
84simprd 496 . . . . 5 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
98feq1d 6492 . . . 4 (𝐹𝑅 → (𝐹:𝐷𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷))
107, 9mpbird 258 . . 3 (𝐹𝑅𝐹:𝐷𝐷)
11 fco 6524 . . . 4 ((𝐹:𝐷𝐷𝐹:𝐷𝐷) → (𝐹𝐹):𝐷𝐷)
1211anidms 567 . . 3 (𝐹:𝐷𝐷 → (𝐹𝐹):𝐷𝐷)
13 ffn 6507 . . 3 ((𝐹𝐹):𝐷𝐷 → (𝐹𝐹) Fn 𝐷)
1410, 12, 133syl 18 . 2 (𝐹𝑅 → (𝐹𝐹) Fn 𝐷)
15 fnresi 6469 . . 3 ( I ↾ 𝐷) Fn 𝐷
1615a1i 11 . 2 (𝐹𝑅 → ( I ↾ 𝐷) Fn 𝐷)
171, 2, 3pmtrffv 18516 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝐹𝑥) = if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥))
18 iftrue 4469 . . . . . . 7 (𝑥 ∈ dom (𝐹 ∖ I ) → if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
1917, 18sylan9eq 2873 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2019fveq2d 6667 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 simpll 763 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝐹𝑅)
225simp2d 1135 . . . . . . . . 9 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
2322ad2antrr 722 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ⊆ 𝐷)
24 1onn 8254 . . . . . . . . . . 11 1o ∈ ω
255simp3d 1136 . . . . . . . . . . . . 13 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
26 df-2o 8092 . . . . . . . . . . . . 13 2o = suc 1o
2725, 26breqtrdi 5098 . . . . . . . . . . . 12 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ suc 1o)
2827ad2antrr 722 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
29 simpr 485 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
30 dif1en 8739 . . . . . . . . . . 11 ((1o ∈ ω ∧ dom (𝐹 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o)
3124, 28, 29, 30mp3an2i 1457 . . . . . . . . . 10 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o)
32 en1uniel 8569 . . . . . . . . . 10 ((dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3331, 32syl 17 . . . . . . . . 9 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3433eldifad 3945 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ))
3523, 34sseldd 3965 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷)
361, 2, 3pmtrffv 18516 . . . . . . 7 ((𝐹𝑅 (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
3721, 35, 36syl2anc 584 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
38 iftrue 4469 . . . . . . . 8 ( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
3934, 38syl 17 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
4025adantr 481 . . . . . . . 8 ((𝐹𝑅𝑥𝐷) → dom (𝐹 ∖ I ) ≈ 2o)
41 en2other2 9423 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4241ancoms 459 . . . . . . . 8 ((dom (𝐹 ∖ I ) ≈ 2o𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4340, 42sylan 580 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4439, 43eqtrd 2853 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4537, 44eqtrd 2853 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4620, 45eqtrd 2853 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
4710ffnd 6508 . . . . . . . 8 (𝐹𝑅𝐹 Fn 𝐷)
48 fnelnfp 6931 . . . . . . . 8 ((𝐹 Fn 𝐷𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4947, 48sylan 580 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
5049necon2bbid 3056 . . . . . 6 ((𝐹𝑅𝑥𝐷) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
5150biimpar 478 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = 𝑥)
52 fveq2 6663 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
53 id 22 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹𝑥) = 𝑥)
5452, 53eqtrd 2853 . . . . 5 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = 𝑥)
5551, 54syl 17 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
5646, 55pm2.61dan 809 . . 3 ((𝐹𝑅𝑥𝐷) → (𝐹‘(𝐹𝑥)) = 𝑥)
57 fvco2 6751 . . . 4 ((𝐹 Fn 𝐷𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
5847, 57sylan 580 . . 3 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
59 fvresi 6927 . . . 4 (𝑥𝐷 → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6059adantl 482 . . 3 ((𝐹𝑅𝑥𝐷) → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6156, 58, 603eqtr4d 2863 . 2 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (( I ↾ 𝐷)‘𝑥))
6214, 16, 61eqfnfvd 6797 1 (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  cdif 3930  wss 3933  ifcif 4463  {csn 4557   cuni 4830   class class class wbr 5057   I cid 5452  dom cdm 5548  ran crn 5549  cres 5550  ccom 5552  suc csuc 6186   Fn wfn 6343  wf 6344  cfv 6348  ωcom 7569  1oc1o 8084  2oc2o 8085  cen 8494  pmTrspcpmtr 18498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pmtr 18499
This theorem is referenced by:  pmtrff1o  18520  pmtrfcnv  18521  symggen  18527  psgnunilem1  18550  cyc3genpmlem  30720
  Copyright terms: Public domain W3C validator