MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfinv Structured version   Visualization version   GIF version

Theorem pmtrfinv 19251
Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfinv (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))

Proof of Theorem pmtrfinv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . . . 7 𝑅 = ran 𝑇
3 eqid 2733 . . . . . . 7 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19248 . . . . . 6 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
54simpld 496 . . . . 5 (𝐹𝑅 → (𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
61pmtrf 19245 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
75, 6syl 17 . . . 4 (𝐹𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷)
84simprd 497 . . . . 5 (𝐹𝑅𝐹 = (𝑇‘dom (𝐹 ∖ I )))
98feq1d 6657 . . . 4 (𝐹𝑅 → (𝐹:𝐷𝐷 ↔ (𝑇‘dom (𝐹 ∖ I )):𝐷𝐷))
107, 9mpbird 257 . . 3 (𝐹𝑅𝐹:𝐷𝐷)
11 fco 6696 . . . 4 ((𝐹:𝐷𝐷𝐹:𝐷𝐷) → (𝐹𝐹):𝐷𝐷)
1211anidms 568 . . 3 (𝐹:𝐷𝐷 → (𝐹𝐹):𝐷𝐷)
13 ffn 6672 . . 3 ((𝐹𝐹):𝐷𝐷 → (𝐹𝐹) Fn 𝐷)
1410, 12, 133syl 18 . 2 (𝐹𝑅 → (𝐹𝐹) Fn 𝐷)
15 fnresi 6634 . . 3 ( I ↾ 𝐷) Fn 𝐷
1615a1i 11 . 2 (𝐹𝑅 → ( I ↾ 𝐷) Fn 𝐷)
171, 2, 3pmtrffv 19249 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝐹𝑥) = if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥))
18 iftrue 4496 . . . . . . 7 (𝑥 ∈ dom (𝐹 ∖ I ) → if(𝑥 ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ {𝑥}), 𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
1917, 18sylan9eq 2793 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = (dom (𝐹 ∖ I ) ∖ {𝑥}))
2019fveq2d 6850 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})))
21 simpll 766 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝐹𝑅)
225simp2d 1144 . . . . . . . . 9 (𝐹𝑅 → dom (𝐹 ∖ I ) ⊆ 𝐷)
2322ad2antrr 725 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ⊆ 𝐷)
24 1onn 8590 . . . . . . . . . . 11 1o ∈ ω
255simp3d 1145 . . . . . . . . . . . . 13 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
26 df-2o 8417 . . . . . . . . . . . . 13 2o = suc 1o
2725, 26breqtrdi 5150 . . . . . . . . . . . 12 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ suc 1o)
2827ad2antrr 725 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → dom (𝐹 ∖ I ) ≈ suc 1o)
29 simpr 486 . . . . . . . . . . 11 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → 𝑥 ∈ dom (𝐹 ∖ I ))
30 dif1ennn 9111 . . . . . . . . . . 11 ((1o ∈ ω ∧ dom (𝐹 ∖ I ) ≈ suc 1o𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o)
3124, 28, 29, 30mp3an2i 1467 . . . . . . . . . 10 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o)
32 en1uniel 8978 . . . . . . . . . 10 ((dom (𝐹 ∖ I ) ∖ {𝑥}) ≈ 1o (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3331, 32syl 17 . . . . . . . . 9 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ (dom (𝐹 ∖ I ) ∖ {𝑥}))
3433eldifad 3926 . . . . . . . 8 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ))
3523, 34sseldd 3949 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷)
361, 2, 3pmtrffv 19249 . . . . . . 7 ((𝐹𝑅 (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ 𝐷) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
3721, 35, 36syl2anc 585 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})))
38 iftrue 4496 . . . . . . . 8 ( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
3934, 38syl 17 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}))
4025adantr 482 . . . . . . . 8 ((𝐹𝑅𝑥𝐷) → dom (𝐹 ∖ I ) ≈ 2o)
41 en2other2 9953 . . . . . . . . 9 ((𝑥 ∈ dom (𝐹 ∖ I ) ∧ dom (𝐹 ∖ I ) ≈ 2o) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4241ancoms 460 . . . . . . . 8 ((dom (𝐹 ∖ I ) ≈ 2o𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4340, 42sylan 581 . . . . . . 7 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}) = 𝑥)
4439, 43eqtrd 2773 . . . . . 6 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → if( (dom (𝐹 ∖ I ) ∖ {𝑥}) ∈ dom (𝐹 ∖ I ), (dom (𝐹 ∖ I ) ∖ { (dom (𝐹 ∖ I ) ∖ {𝑥})}), (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4537, 44eqtrd 2773 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹 (dom (𝐹 ∖ I ) ∖ {𝑥})) = 𝑥)
4620, 45eqtrd 2773 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
4710ffnd 6673 . . . . . . . 8 (𝐹𝑅𝐹 Fn 𝐷)
48 fnelnfp 7127 . . . . . . . 8 ((𝐹 Fn 𝐷𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
4947, 48sylan 581 . . . . . . 7 ((𝐹𝑅𝑥𝐷) → (𝑥 ∈ dom (𝐹 ∖ I ) ↔ (𝐹𝑥) ≠ 𝑥))
5049necon2bbid 2984 . . . . . 6 ((𝐹𝑅𝑥𝐷) → ((𝐹𝑥) = 𝑥 ↔ ¬ 𝑥 ∈ dom (𝐹 ∖ I )))
5150biimpar 479 . . . . 5 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹𝑥) = 𝑥)
52 fveq2 6846 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
53 id 22 . . . . . 6 ((𝐹𝑥) = 𝑥 → (𝐹𝑥) = 𝑥)
5452, 53eqtrd 2773 . . . . 5 ((𝐹𝑥) = 𝑥 → (𝐹‘(𝐹𝑥)) = 𝑥)
5551, 54syl 17 . . . 4 (((𝐹𝑅𝑥𝐷) ∧ ¬ 𝑥 ∈ dom (𝐹 ∖ I )) → (𝐹‘(𝐹𝑥)) = 𝑥)
5646, 55pm2.61dan 812 . . 3 ((𝐹𝑅𝑥𝐷) → (𝐹‘(𝐹𝑥)) = 𝑥)
57 fvco2 6942 . . . 4 ((𝐹 Fn 𝐷𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
5847, 57sylan 581 . . 3 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (𝐹‘(𝐹𝑥)))
59 fvresi 7123 . . . 4 (𝑥𝐷 → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6059adantl 483 . . 3 ((𝐹𝑅𝑥𝐷) → (( I ↾ 𝐷)‘𝑥) = 𝑥)
6156, 58, 603eqtr4d 2783 . 2 ((𝐹𝑅𝑥𝐷) → ((𝐹𝐹)‘𝑥) = (( I ↾ 𝐷)‘𝑥))
6214, 16, 61eqfnfvd 6989 1 (𝐹𝑅 → (𝐹𝐹) = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  Vcvv 3447  cdif 3911  wss 3914  ifcif 4490  {csn 4590   cuni 4869   class class class wbr 5109   I cid 5534  dom cdm 5637  ran crn 5638  cres 5639  ccom 5641  suc csuc 6323   Fn wfn 6495  wf 6496  cfv 6500  ωcom 7806  1oc1o 8409  2oc2o 8410  cen 8886  pmTrspcpmtr 19231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-om 7807  df-1o 8416  df-2o 8417  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pmtr 19232
This theorem is referenced by:  pmtrff1o  19253  pmtrfcnv  19254  symggen  19260  psgnunilem1  19283  cyc3genpmlem  32056
  Copyright terms: Public domain W3C validator