Proof of Theorem lkreqN
Step | Hyp | Ref
| Expression |
1 | | lkreq.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 = (𝐴 · 𝐻)) |
2 | 1 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 = (0g‘𝐷) ↔ (𝐴 · 𝐻) = (0g‘𝐷))) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
4 | | lkreq.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝐷) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Scalar‘𝐷) =
(Scalar‘𝐷) |
6 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) |
7 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘(Scalar‘𝐷)) =
(0g‘(Scalar‘𝐷)) |
8 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐷) = (0g‘𝐷) |
9 | | lkreq.d |
. . . . . . . . . . 11
⊢ 𝐷 = (LDual‘𝑊) |
10 | | lkreq.w |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ LVec) |
11 | 9, 10 | lduallvec 37168 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ LVec) |
12 | | lkreq.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ (𝑅 ∖ { 0 })) |
13 | 12 | eldifad 3899 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑅) |
14 | | lkreq.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (Scalar‘𝑊) |
15 | | lkreq.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (Base‘𝑆) |
16 | 14, 15, 9, 5, 6, 10 | ldualsbase 37147 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Base‘(Scalar‘𝐷)) = 𝑅) |
17 | 13, 16 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (Base‘(Scalar‘𝐷))) |
18 | | lkreq.f |
. . . . . . . . . . 11
⊢ 𝐹 = (LFnl‘𝑊) |
19 | | lkreq.h |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
20 | 18, 9, 3, 10, 19 | ldualelvbase 37141 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
21 | 3, 4, 5, 6, 7, 8, 11, 17, 20 | lvecvs0or 20370 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 · 𝐻) = (0g‘𝐷) ↔ (𝐴 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = (0g‘𝐷)))) |
22 | | lkreq.o |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑆) |
23 | | lveclmod 20368 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
24 | 10, 23 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈ LMod) |
25 | 14, 22, 9, 5, 7, 24 | ldual0 37161 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(0g‘(Scalar‘𝐷)) = 0 ) |
26 | 25 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 = (0g‘(Scalar‘𝐷)) ↔ 𝐴 = 0 )) |
27 | | eldifsni 4723 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝑅 ∖ { 0 }) → 𝐴 ≠ 0 ) |
28 | 12, 27 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≠ 0 ) |
29 | 28 | a1d 25 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐻 ≠ (0g‘𝐷) → 𝐴 ≠ 0 )) |
30 | 29 | necon4d 2967 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 = 0 → 𝐻 = (0g‘𝐷))) |
31 | 26, 30 | sylbid 239 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 = (0g‘(Scalar‘𝐷)) → 𝐻 = (0g‘𝐷))) |
32 | | idd 24 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 = (0g‘𝐷) → 𝐻 = (0g‘𝐷))) |
33 | 31, 32 | jaod 856 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 = (0g‘(Scalar‘𝐷)) ∨ 𝐻 = (0g‘𝐷)) → 𝐻 = (0g‘𝐷))) |
34 | 21, 33 | sylbid 239 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴 · 𝐻) = (0g‘𝐷) → 𝐻 = (0g‘𝐷))) |
35 | 2, 34 | sylbid 239 |
. . . . . . 7
⊢ (𝜑 → (𝐺 = (0g‘𝐷) → 𝐻 = (0g‘𝐷))) |
36 | | nne 2947 |
. . . . . . 7
⊢ (¬
𝐻 ≠
(0g‘𝐷)
↔ 𝐻 =
(0g‘𝐷)) |
37 | 35, 36 | syl6ibr 251 |
. . . . . 6
⊢ (𝜑 → (𝐺 = (0g‘𝐷) → ¬ 𝐻 ≠ (0g‘𝐷))) |
38 | 37 | con3d 152 |
. . . . 5
⊢ (𝜑 → (¬ ¬ 𝐻 ≠ (0g‘𝐷) → ¬ 𝐺 = (0g‘𝐷))) |
39 | 38 | orrd 860 |
. . . 4
⊢ (𝜑 → (¬ 𝐻 ≠ (0g‘𝐷) ∨ ¬ 𝐺 = (0g‘𝐷))) |
40 | | ianor 979 |
. . . 4
⊢ (¬
(𝐻 ≠
(0g‘𝐷)
∧ 𝐺 =
(0g‘𝐷))
↔ (¬ 𝐻 ≠
(0g‘𝐷)
∨ ¬ 𝐺 =
(0g‘𝐷))) |
41 | 39, 40 | sylibr 233 |
. . 3
⊢ (𝜑 → ¬ (𝐻 ≠ (0g‘𝐷) ∧ 𝐺 = (0g‘𝐷))) |
42 | | lkreq.k |
. . . . . . 7
⊢ 𝐾 = (LKer‘𝑊) |
43 | 18, 14, 15, 9, 4, 24, 13, 19 | ldualvscl 37153 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 · 𝐻) ∈ 𝐹) |
44 | 1, 43 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
45 | 18, 42, 9, 8, 10, 19, 44 | lkrpssN 37177 |
. . . . . 6
⊢ (𝜑 → ((𝐾‘𝐻) ⊊ (𝐾‘𝐺) ↔ (𝐻 ≠ (0g‘𝐷) ∧ 𝐺 = (0g‘𝐷)))) |
46 | | df-pss 3906 |
. . . . . 6
⊢ ((𝐾‘𝐻) ⊊ (𝐾‘𝐺) ↔ ((𝐾‘𝐻) ⊆ (𝐾‘𝐺) ∧ (𝐾‘𝐻) ≠ (𝐾‘𝐺))) |
47 | 45, 46 | bitr3di 286 |
. . . . 5
⊢ (𝜑 → ((𝐻 ≠ (0g‘𝐷) ∧ 𝐺 = (0g‘𝐷)) ↔ ((𝐾‘𝐻) ⊆ (𝐾‘𝐺) ∧ (𝐾‘𝐻) ≠ (𝐾‘𝐺)))) |
48 | 14, 15, 18, 42, 9, 4, 10, 19, 13 | lkrss 37182 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝐻) ⊆ (𝐾‘(𝐴 · 𝐻))) |
49 | 1 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘(𝐴 · 𝐻))) |
50 | 48, 49 | sseqtrrd 3962 |
. . . . . 6
⊢ (𝜑 → (𝐾‘𝐻) ⊆ (𝐾‘𝐺)) |
51 | 50 | biantrurd 533 |
. . . . 5
⊢ (𝜑 → ((𝐾‘𝐻) ≠ (𝐾‘𝐺) ↔ ((𝐾‘𝐻) ⊆ (𝐾‘𝐺) ∧ (𝐾‘𝐻) ≠ (𝐾‘𝐺)))) |
52 | 47, 51 | bitr4d 281 |
. . . 4
⊢ (𝜑 → ((𝐻 ≠ (0g‘𝐷) ∧ 𝐺 = (0g‘𝐷)) ↔ (𝐾‘𝐻) ≠ (𝐾‘𝐺))) |
53 | 52 | necon2bbid 2987 |
. . 3
⊢ (𝜑 → ((𝐾‘𝐻) = (𝐾‘𝐺) ↔ ¬ (𝐻 ≠ (0g‘𝐷) ∧ 𝐺 = (0g‘𝐷)))) |
54 | 41, 53 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐾‘𝐻) = (𝐾‘𝐺)) |
55 | 54 | eqcomd 2744 |
1
⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) |