| Step | Hyp | Ref
| Expression |
| 1 | | fveq1 6905 |
. . . . . 6
⊢ (𝑐 = 𝑑 → (𝑐‘𝑎) = (𝑑‘𝑎)) |
| 2 | 1 | oveq1d 7446 |
. . . . 5
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑎)𝐹𝑏) = ((𝑑‘𝑎)𝐹𝑏)) |
| 3 | 2 | mpoeq3dv 7512 |
. . . 4
⊢ (𝑐 = 𝑑 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) |
| 4 | 3 | fveq2d 6910 |
. . 3
⊢ (𝑐 = 𝑑 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) |
| 5 | | fveq2 6906 |
. . . 4
⊢ (𝑐 = 𝑑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) |
| 6 | 5 | oveq1d 7446 |
. . 3
⊢ (𝑐 = 𝑑 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) |
| 7 | 4, 6 | eqeq12d 2753 |
. 2
⊢ (𝑐 = 𝑑 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) ↔ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹)))) |
| 8 | | fveq1 6905 |
. . . . . 6
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑐‘𝑎) = ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)) |
| 9 | 8 | oveq1d 7446 |
. . . . 5
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝑐‘𝑎)𝐹𝑏) = (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)) |
| 10 | 9 | mpoeq3dv 7512 |
. . . 4
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) |
| 11 | 10 | fveq2d 6910 |
. . 3
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)))) |
| 12 | | fveq2 6906 |
. . . 4
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒))) |
| 13 | 12 | oveq1d 7446 |
. . 3
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹))) |
| 14 | 11, 13 | eqeq12d 2753 |
. 2
⊢ (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) ↔ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹)))) |
| 15 | | fveq1 6905 |
. . . . . 6
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → (𝑐‘𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎)) |
| 16 | 15 | oveq1d 7446 |
. . . . 5
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → ((𝑐‘𝑎)𝐹𝑏) =
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) |
| 17 | 16 | mpoeq3dv 7512 |
. . . 4
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) |
| 18 | 17 | fveq2d 6910 |
. . 3
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)))) |
| 19 | | fveq2 6906 |
. . . 4
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁)))) |
| 20 | 19 | oveq1d 7446 |
. . 3
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷‘𝐹))) |
| 21 | 18, 20 | eqeq12d 2753 |
. 2
⊢ (𝑐 =
(0g‘(SymGrp‘𝑁)) → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) ↔ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷‘𝐹)))) |
| 22 | | fveq1 6905 |
. . . . . 6
⊢ (𝑐 = 𝐸 → (𝑐‘𝑎) = (𝐸‘𝑎)) |
| 23 | 22 | oveq1d 7446 |
. . . . 5
⊢ (𝑐 = 𝐸 → ((𝑐‘𝑎)𝐹𝑏) = ((𝐸‘𝑎)𝐹𝑏)) |
| 24 | 23 | mpoeq3dv 7512 |
. . . 4
⊢ (𝑐 = 𝐸 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏))) |
| 25 | 24 | fveq2d 6910 |
. . 3
⊢ (𝑐 = 𝐸 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏)))) |
| 26 | | fveq2 6906 |
. . . 4
⊢ (𝑐 = 𝐸 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸)) |
| 27 | 26 | oveq1d 7446 |
. . 3
⊢ (𝑐 = 𝐸 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘𝐹))) |
| 28 | 25, 27 | eqeq12d 2753 |
. 2
⊢ (𝑐 = 𝐸 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑐‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷‘𝐹)) ↔ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘𝐹)))) |
| 29 | | eqid 2737 |
. 2
⊢
(0g‘(SymGrp‘𝑁)) =
(0g‘(SymGrp‘𝑁)) |
| 30 | | eqid 2737 |
. 2
⊢
(+g‘(SymGrp‘𝑁)) =
(+g‘(SymGrp‘𝑁)) |
| 31 | | eqid 2737 |
. 2
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
| 32 | | mdetuni.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 33 | 32 | 3ad2ant1 1134 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 34 | | eqid 2737 |
. . . 4
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
| 35 | 34 | symggrp 19418 |
. . 3
⊢ (𝑁 ∈ Fin →
(SymGrp‘𝑁) ∈
Grp) |
| 36 | | grpmnd 18958 |
. . 3
⊢
((SymGrp‘𝑁)
∈ Grp → (SymGrp‘𝑁) ∈ Mnd) |
| 37 | 33, 35, 36 | 3syl 18 |
. 2
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (SymGrp‘𝑁) ∈ Mnd) |
| 38 | | eqid 2737 |
. . . 4
⊢ ran
(pmTrsp‘𝑁) = ran
(pmTrsp‘𝑁) |
| 39 | 38, 34, 31 | symgtrf 19487 |
. . 3
⊢ ran
(pmTrsp‘𝑁) ⊆
(Base‘(SymGrp‘𝑁)) |
| 40 | 39 | a1i 11 |
. 2
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))) |
| 41 | | eqid 2737 |
. . . . . 6
⊢
(mrCls‘(SubMnd‘(SymGrp‘𝑁))) =
(mrCls‘(SubMnd‘(SymGrp‘𝑁))) |
| 42 | 38, 34, 31, 41 | symggen2 19489 |
. . . . 5
⊢ (𝑁 ∈ Fin →
((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) =
(Base‘(SymGrp‘𝑁))) |
| 43 | 32, 42 | syl 17 |
. . . 4
⊢ (𝜑 →
((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) =
(Base‘(SymGrp‘𝑁))) |
| 44 | 43 | eqcomd 2743 |
. . 3
⊢ (𝜑 →
(Base‘(SymGrp‘𝑁)) =
((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁))) |
| 45 | 44 | 3ad2ant1 1134 |
. 2
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (Base‘(SymGrp‘𝑁)) =
((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁))) |
| 46 | | mdetuni.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 47 | 46 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 48 | | mdetuni.ff |
. . . . . 6
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| 49 | 48 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐷:𝐵⟶𝐾) |
| 50 | | simp3 1139 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
| 51 | 49, 50 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘𝐹) ∈ 𝐾) |
| 52 | | mdetuni.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
| 53 | | mdetuni.tg |
. . . . 5
⊢ · =
(.r‘𝑅) |
| 54 | | mdetuni.1r |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
| 55 | 52, 53, 54 | ringlidm 20266 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐷‘𝐹) ∈ 𝐾) → ( 1 · (𝐷‘𝐹)) = (𝐷‘𝐹)) |
| 56 | 47, 51, 55 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → ( 1 · (𝐷‘𝐹)) = (𝐷‘𝐹)) |
| 57 | | zrhpsgnmhm 21602 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) →
((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))
∈ ((SymGrp‘𝑁)
MndHom (mulGrp‘𝑅))) |
| 58 | 46, 32, 57 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
| 59 | | eqid 2737 |
. . . . . . . 8
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 60 | 59, 54 | ringidval 20180 |
. . . . . . 7
⊢ 1 =
(0g‘(mulGrp‘𝑅)) |
| 61 | 29, 60 | mhm0 18807 |
. . . . . 6
⊢
(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 ) |
| 62 | 58, 61 | syl 17 |
. . . . 5
⊢ (𝜑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 ) |
| 63 | 62 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 ) |
| 64 | 63 | oveq1d 7446 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷‘𝐹)) = ( 1 · (𝐷‘𝐹))) |
| 65 | 34 | symgid 19419 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ Fin → ( I ↾
𝑁) =
(0g‘(SymGrp‘𝑁))) |
| 66 | 32, 65 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ( I ↾ 𝑁) =
(0g‘(SymGrp‘𝑁))) |
| 67 | 66 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
| 68 | 67 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
| 69 | 68 | fveq1d 6908 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (( I ↾ 𝑁)‘𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎)) |
| 70 | | simp2 1138 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
| 71 | | fvresi 7193 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝑁 → (( I ↾ 𝑁)‘𝑎) = 𝑎) |
| 72 | 70, 71 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (( I ↾ 𝑁)‘𝑎) = 𝑎) |
| 73 | 69, 72 | eqtr3d 2779 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) →
((0g‘(SymGrp‘𝑁))‘𝑎) = 𝑎) |
| 74 | 73 | oveq1d 7446 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) →
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏) = (𝑎𝐹𝑏)) |
| 75 | 74 | mpoeq3dva 7510 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (𝑎𝐹𝑏))) |
| 76 | | mdetuni.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 77 | | mdetuni.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐴) |
| 78 | 76, 52, 77 | matbas2i 22428 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
| 79 | 78 | 3ad2ant3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐹 ∈ (𝐾 ↑m (𝑁 × 𝑁))) |
| 80 | | elmapi 8889 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐾 ↑m (𝑁 × 𝑁)) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 81 | | ffn 6736 |
. . . . . . 7
⊢ (𝐹:(𝑁 × 𝑁)⟶𝐾 → 𝐹 Fn (𝑁 × 𝑁)) |
| 82 | 79, 80, 81 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐹 Fn (𝑁 × 𝑁)) |
| 83 | | fnov 7564 |
. . . . . 6
⊢ (𝐹 Fn (𝑁 × 𝑁) ↔ 𝐹 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (𝑎𝐹𝑏))) |
| 84 | 82, 83 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐹 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (𝑎𝐹𝑏))) |
| 85 | 75, 84 | eqtr4d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = 𝐹) |
| 86 | 85 | fveq2d 6910 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = (𝐷‘𝐹)) |
| 87 | 56, 64, 86 | 3eqtr4rd 2788 |
. 2
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦
(((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷‘𝐹))) |
| 88 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑑 ∈ (Base‘(SymGrp‘𝑁))) |
| 89 | 39 | sseli 3979 |
. . . . . . . . . . . . 13
⊢ (𝑒 ∈ ran (pmTrsp‘𝑁) → 𝑒 ∈ (Base‘(SymGrp‘𝑁))) |
| 90 | 89 | 3ad2ant3 1136 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ (Base‘(SymGrp‘𝑁))) |
| 91 | 34, 31, 30 | symgov 19401 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈
(Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑 ∘ 𝑒)) |
| 92 | 88, 90, 91 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑 ∘ 𝑒)) |
| 93 | 92 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑 ∘ 𝑒)‘𝑎)) |
| 94 | 93 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑 ∘ 𝑒)‘𝑎)) |
| 95 | 34, 31 | symgbasf1o 19392 |
. . . . . . . . . . . 12
⊢ (𝑒 ∈
(Base‘(SymGrp‘𝑁)) → 𝑒:𝑁–1-1-onto→𝑁) |
| 96 | | f1of 6848 |
. . . . . . . . . . . 12
⊢ (𝑒:𝑁–1-1-onto→𝑁 → 𝑒:𝑁⟶𝑁) |
| 97 | 90, 95, 96 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒:𝑁⟶𝑁) |
| 98 | 97 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑒:𝑁⟶𝑁) |
| 99 | | simp2 1138 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
| 100 | | fvco3 7008 |
. . . . . . . . . 10
⊢ ((𝑒:𝑁⟶𝑁 ∧ 𝑎 ∈ 𝑁) → ((𝑑 ∘ 𝑒)‘𝑎) = (𝑑‘(𝑒‘𝑎))) |
| 101 | 98, 99, 100 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑 ∘ 𝑒)‘𝑎) = (𝑑‘(𝑒‘𝑎))) |
| 102 | 94, 101 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = (𝑑‘(𝑒‘𝑎))) |
| 103 | 102 | oveq1d 7446 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏) = ((𝑑‘(𝑒‘𝑎))𝐹𝑏)) |
| 104 | 103 | mpoeq3dva 7510 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) |
| 105 | 104 | fveq2d 6910 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏)))) |
| 106 | 34, 31 | symgbasf 19393 |
. . . . . 6
⊢ (𝑑 ∈
(Base‘(SymGrp‘𝑁)) → 𝑑:𝑁⟶𝑁) |
| 107 | | eqid 2737 |
. . . . . . . . 9
⊢
(pmTrsp‘𝑁) =
(pmTrsp‘𝑁) |
| 108 | 107, 38 | pmtrrn2 19478 |
. . . . . . . 8
⊢ (𝑒 ∈ ran (pmTrsp‘𝑁) → ∃𝑐 ∈ 𝑁 ∃𝑓 ∈ 𝑁 (𝑐 ≠ 𝑓 ∧ 𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}))) |
| 109 | | mdetuni.0g |
. . . . . . . . . . . . . 14
⊢ 0 =
(0g‘𝑅) |
| 110 | | mdetuni.pg |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑅) |
| 111 | | mdetuni.al |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| 112 | | mdetuni.li |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| 113 | | mdetuni.sc |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| 114 | | simpll1 1213 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝜑) |
| 115 | | df-3an 1089 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁 ∧ 𝑐 ≠ 𝑓) ↔ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) |
| 116 | 115 | biimpri 228 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓) → (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁 ∧ 𝑐 ≠ 𝑓)) |
| 117 | 116 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁 ∧ 𝑐 ≠ 𝑓)) |
| 118 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 119 | 118 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 120 | 119 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 121 | | simpllr 776 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → 𝑑:𝑁⟶𝑁) |
| 122 | | simprlr 780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑓 ∈ 𝑁) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → 𝑓 ∈ 𝑁) |
| 124 | 121, 123 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → (𝑑‘𝑓) ∈ 𝑁) |
| 125 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
| 126 | 120, 124,
125 | fovcdmd 7605 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → ((𝑑‘𝑓)𝐹𝑏) ∈ 𝐾) |
| 127 | | simprll 779 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑐 ∈ 𝑁) |
| 128 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → 𝑐 ∈ 𝑁) |
| 129 | 121, 128 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → (𝑑‘𝑐) ∈ 𝑁) |
| 130 | 120, 129,
125 | fovcdmd 7605 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → ((𝑑‘𝑐)𝐹𝑏) ∈ 𝐾) |
| 131 | 126, 130 | jca 511 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑏 ∈ 𝑁) → (((𝑑‘𝑓)𝐹𝑏) ∈ 𝐾 ∧ ((𝑑‘𝑐)𝐹𝑏) ∈ 𝐾)) |
| 132 | 118 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 133 | 132 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾) |
| 134 | | simp1lr 1238 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑑:𝑁⟶𝑁) |
| 135 | | simp2 1138 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
| 136 | 134, 135 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑑‘𝑎) ∈ 𝑁) |
| 137 | | simp3 1139 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝑏 ∈ 𝑁) |
| 138 | 133, 136,
137 | fovcdmd 7605 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑‘𝑎)𝐹𝑏) ∈ 𝐾) |
| 139 | 76, 77, 52, 109, 54, 110, 53, 32, 46, 48, 111, 112, 113, 114, 117, 131, 138 | mdetunilem6 22623 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))))) |
| 140 | | simpl1 1192 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) → 𝜑) |
| 141 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑐 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐)) |
| 142 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑁 ∈ Fin) |
| 143 | | simprll 779 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑐 ∈ 𝑁) |
| 144 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑓 ∈ 𝑁) |
| 145 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → 𝑐 ≠ 𝑓) |
| 146 | 107 | pmtrprfv 19471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ Fin ∧ (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁 ∧ 𝑐 ≠ 𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓) |
| 147 | 142, 143,
144, 145, 146 | syl13anc 1374 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓) |
| 148 | 147 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓) |
| 149 | 141, 148 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑐) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑓) |
| 150 | 149 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑐) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑‘𝑓)) |
| 151 | 150 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑‘𝑓)𝐹𝑏)) |
| 152 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = ((𝑑‘𝑓)𝐹𝑏)) |
| 153 | 152 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = ((𝑑‘𝑓)𝐹𝑏)) |
| 154 | 151, 153 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 155 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = 𝑓 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓)) |
| 156 | | prcom 4732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {𝑐, 𝑓} = {𝑓, 𝑐} |
| 157 | 156 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((pmTrsp‘𝑁)‘{𝑐, 𝑓}) = ((pmTrsp‘𝑁)‘{𝑓, 𝑐}) |
| 158 | 157 | fveq1i 6907 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) |
| 159 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 160 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁)) |
| 161 | 160 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑓 ∈ 𝑁) |
| 162 | 160 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑐 ∈ 𝑁) |
| 163 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑐 ≠ 𝑓) |
| 164 | 163 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑓 ≠ 𝑐) |
| 165 | 107 | pmtrprfv 19471 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ Fin ∧ (𝑓 ∈ 𝑁 ∧ 𝑐 ∈ 𝑁 ∧ 𝑓 ≠ 𝑐)) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐) |
| 166 | 159, 161,
162, 164, 165 | syl13anc 1374 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐) |
| 167 | 158, 166 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = 𝑐) |
| 168 | 155, 167 | sylan9eqr 2799 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑐) |
| 169 | 168 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑‘𝑐)) |
| 170 | 169 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑‘𝑐)𝐹𝑏)) |
| 171 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑐)𝐹𝑏)) |
| 172 | 171 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑐)𝐹𝑏)) |
| 173 | 170, 172 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 174 | 173 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 175 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑎 ∈ V |
| 176 | 175 | elpr 4650 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ∈ {𝑐, 𝑓} ↔ (𝑎 = 𝑐 ∨ 𝑎 = 𝑓)) |
| 177 | 176 | notbii 320 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑎 ∈ {𝑐, 𝑓} ↔ ¬ (𝑎 = 𝑐 ∨ 𝑎 = 𝑓)) |
| 178 | | ioran 986 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
(𝑎 = 𝑐 ∨ 𝑎 = 𝑓) ↔ (¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓)) |
| 179 | 177, 178 | sylbbr 236 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((¬
𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓}) |
| 180 | 179 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓}) |
| 181 | | prssi 4821 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) → {𝑐, 𝑓} ⊆ 𝑁) |
| 182 | 160, 181 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → {𝑐, 𝑓} ⊆ 𝑁) |
| 183 | | pr2ne 10044 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) → ({𝑐, 𝑓} ≈ 2o ↔ 𝑐 ≠ 𝑓)) |
| 184 | 160, 183 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → ({𝑐, 𝑓} ≈ 2o ↔ 𝑐 ≠ 𝑓)) |
| 185 | 163, 184 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → {𝑐, 𝑓} ≈ 2o) |
| 186 | 107 | pmtrmvd 19474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) → dom
(((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓}) |
| 187 | 159, 182,
185, 186 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓}) |
| 188 | 187 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ 𝑎 ∈ {𝑐, 𝑓})) |
| 189 | 188 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓})) |
| 190 | 189 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓})) |
| 191 | 180, 190 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )) |
| 192 | 107 | pmtrf 19473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) →
((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁⟶𝑁) |
| 193 | 159, 182,
185, 192 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁⟶𝑁) |
| 194 | 193 | ffnd 6737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁) |
| 195 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → 𝑎 ∈ 𝑁) |
| 196 | | fnelnfp 7197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁 ∧ 𝑎 ∈ 𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) ≠ 𝑎)) |
| 197 | 196 | necon2bbid 2984 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁 ∧ 𝑎 ∈ 𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))) |
| 198 | 194, 195,
197 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))) |
| 199 | 198 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))) |
| 200 | 191, 199 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎) |
| 201 | 200 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑‘𝑎)) |
| 202 | 201 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑‘𝑎)𝐹𝑏)) |
| 203 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑎)𝐹𝑏)) |
| 204 | 203 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑎)𝐹𝑏)) |
| 205 | 202, 204 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 206 | 174, 205 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 207 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 208 | 207 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 209 | 206, 208 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 210 | 154, 209 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 211 | 210 | 3adant3 1133 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 212 | 211 | mpoeq3dva 7510 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))) |
| 213 | 140, 212 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))) |
| 214 | 213 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑐)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))))) |
| 215 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑐 → (𝑑‘𝑎) = (𝑑‘𝑐)) |
| 216 | 215 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑐 → ((𝑑‘𝑎)𝐹𝑏) = ((𝑑‘𝑐)𝐹𝑏)) |
| 217 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = ((𝑑‘𝑐)𝐹𝑏)) |
| 218 | 216, 217 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑐 → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 219 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = 𝑓 → (𝑑‘𝑎) = (𝑑‘𝑓)) |
| 220 | 219 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑓 → ((𝑑‘𝑎)𝐹𝑏) = ((𝑑‘𝑓)𝐹𝑏)) |
| 221 | | iftrue 4531 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑓)𝐹𝑏)) |
| 222 | 220, 221 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑓 → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 223 | 222 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑎 = 𝑐 ∧ 𝑎 = 𝑓) → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 224 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)) = ((𝑑‘𝑎)𝐹𝑏)) |
| 225 | 224 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑎 = 𝑓 → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 226 | 225 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 227 | 223, 226 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑎 = 𝑐 → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 228 | | iffalse 4534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 229 | 227, 228 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑎 = 𝑐 → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 230 | 218, 229 | pm2.61i 182 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))) |
| 231 | 230 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ((𝑑‘𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 232 | 231 | mpoeq3ia 7511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))) |
| 233 | 232 | fveq2i 6909 |
. . . . . . . . . . . . . . 15
⊢ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))) |
| 234 | 233 | fveq2i 6909 |
. . . . . . . . . . . . . 14
⊢
((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏)))))) |
| 235 | 234 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑐, ((𝑑‘𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑‘𝑓)𝐹𝑏), ((𝑑‘𝑎)𝐹𝑏))))))) |
| 236 | 139, 214,
235 | 3eqtr4d 2787 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))) |
| 237 | | fveq1 6905 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑒‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) |
| 238 | 237 | fveq2d 6910 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑑‘(𝑒‘𝑎)) = (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))) |
| 239 | 238 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝑑‘(𝑒‘𝑎))𝐹𝑏) = ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) |
| 240 | 239 | mpoeq3dv 7512 |
. . . . . . . . . . . . 13
⊢ (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏)) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) |
| 241 | 240 | fveqeq2d 6914 |
. . . . . . . . . . . 12
⊢ (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) ↔ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))))) |
| 242 | 236, 241 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ ((𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁) ∧ 𝑐 ≠ 𝑓)) → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))))) |
| 243 | 242 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁)) → (𝑐 ≠ 𝑓 → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))))) |
| 244 | 243 | impd 410 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) ∧ (𝑐 ∈ 𝑁 ∧ 𝑓 ∈ 𝑁)) → ((𝑐 ≠ 𝑓 ∧ 𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))))) |
| 245 | 244 | rexlimdvva 3213 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) → (∃𝑐 ∈ 𝑁 ∃𝑓 ∈ 𝑁 (𝑐 ≠ 𝑓 ∧ 𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))))) |
| 246 | 108, 245 | syl5 34 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁) → (𝑒 ∈ ran (pmTrsp‘𝑁) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))))) |
| 247 | 246 | 3impia 1118 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑:𝑁⟶𝑁 ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))) |
| 248 | 106, 247 | syl3an2 1165 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘(𝑒‘𝑎))𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))) |
| 249 | 105, 248 | eqtrd 2777 |
. . . 4
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))) |
| 250 | 249 | adantr 480 |
. . 3
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))))) |
| 251 | | fveq2 6906 |
. . . 4
⊢ ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹)) → ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) = ((invg‘𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹)))) |
| 252 | 251 | adantl 481 |
. . 3
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) → ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏)))) = ((invg‘𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹)))) |
| 253 | | eqid 2737 |
. . . . . 6
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 254 | 47 | 3ad2ant1 1134 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑅 ∈ Ring) |
| 255 | 58 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
| 256 | 255 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) |
| 257 | 59, 52 | mgpbas 20142 |
. . . . . . . . 9
⊢ 𝐾 =
(Base‘(mulGrp‘𝑅)) |
| 258 | 31, 257 | mhmf 18802 |
. . . . . . . 8
⊢
(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾) |
| 259 | 256, 258 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾) |
| 260 | 259, 88 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ∈ 𝐾) |
| 261 | 49 | 3ad2ant1 1134 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐷:𝐵⟶𝐾) |
| 262 | | simp13 1206 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐹 ∈ 𝐵) |
| 263 | 261, 262 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘𝐹) ∈ 𝐾) |
| 264 | 52, 53, 253, 254, 260, 263 | ringmneg1 20301 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg‘𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷‘𝐹)) = ((invg‘𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹)))) |
| 265 | 59, 53 | mgpplusg 20141 |
. . . . . . . . 9
⊢ · =
(+g‘(mulGrp‘𝑅)) |
| 266 | 31, 30, 265 | mhmlin 18806 |
. . . . . . . 8
⊢
((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) →
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ·
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑒))) |
| 267 | 256, 88, 90, 266 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ·
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑒))) |
| 268 | 33 | 3ad2ant1 1134 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑁 ∈ Fin) |
| 269 | | simp3 1139 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ran (pmTrsp‘𝑁)) |
| 270 | 34, 31, 38 | pmtrodpm 21615 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) |
| 271 | 268, 269,
270 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) |
| 272 | | eqid 2737 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 273 | | eqid 2737 |
. . . . . . . . . 10
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
| 274 | 272, 273,
54, 31, 253 | zrhpsgnodpm 21610 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑒 ∈
((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg‘𝑅)‘ 1 )) |
| 275 | 254, 268,
271, 274 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg‘𝑅)‘ 1 )) |
| 276 | 275 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ·
(((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ·
((invg‘𝑅)‘ 1 ))) |
| 277 | 52, 53, 54, 253, 254, 260 | ringnegr 20300 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ·
((invg‘𝑅)‘ 1 )) =
((invg‘𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑))) |
| 278 | 267, 276,
277 | 3eqtrrd 2782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg‘𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒))) |
| 279 | 278 | oveq1d 7446 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg‘𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷‘𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹))) |
| 280 | 264, 279 | eqtr3d 2779 |
. . . 4
⊢ (((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg‘𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹))) |
| 281 | 280 | adantr 480 |
. . 3
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) → ((invg‘𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹))) |
| 282 | 250, 252,
281 | 3eqtrd 2781 |
. 2
⊢ ((((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝑑‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷‘𝐹))) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷‘𝐹))) |
| 283 | | simp2 1138 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐸:𝑁–1-1-onto→𝑁) |
| 284 | 34, 31 | elsymgbas 19391 |
. . . 4
⊢ (𝑁 ∈ Fin → (𝐸 ∈
(Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁–1-1-onto→𝑁)) |
| 285 | 33, 284 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁–1-1-onto→𝑁)) |
| 286 | 283, 285 | mpbird 257 |
. 2
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → 𝐸 ∈ (Base‘(SymGrp‘𝑁))) |
| 287 | 7, 14, 21, 28, 29, 30, 31, 37, 40, 45, 87, 282, 286 | mndind 18841 |
1
⊢ ((𝜑 ∧ 𝐸:𝑁–1-1-onto→𝑁 ∧ 𝐹 ∈ 𝐵) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ ((𝐸‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷‘𝐹))) |