MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem7 Structured version   Visualization version   GIF version

Theorem mdetunilem7 21223
Description: Lemma for mdetuni 21227. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
Assertion
Ref Expression
mdetunilem7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem7
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6644 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
21oveq1d 7150 . . . . 5 (𝑐 = 𝑑 → ((𝑐𝑎)𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
32mpoeq3dv 7212 . . . 4 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))
43fveq2d 6649 . . 3 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))
5 fveq2 6645 . . . 4 (𝑐 = 𝑑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑))
65oveq1d 7150 . . 3 (𝑐 = 𝑑 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)))
74, 6eqeq12d 2814 . 2 (𝑐 = 𝑑 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
8 fveq1 6644 . . . . . 6 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑐𝑎) = ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎))
98oveq1d 7150 . . . . 5 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝑐𝑎)𝐹𝑏) = (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))
109mpoeq3dv 7212 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)))
1110fveq2d 6649 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))))
12 fveq2 6645 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
1312oveq1d 7150 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
1411, 13eqeq12d 2814 . 2 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹))))
15 fveq1 6644 . . . . . 6 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑐𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
1615oveq1d 7150 . . . . 5 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝑐𝑎)𝐹𝑏) = (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))
1716mpoeq3dv 7212 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)))
1817fveq2d 6649 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))))
19 fveq2 6645 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))))
2019oveq1d 7150 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
2118, 20eqeq12d 2814 . 2 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹))))
22 fveq1 6644 . . . . . 6 (𝑐 = 𝐸 → (𝑐𝑎) = (𝐸𝑎))
2322oveq1d 7150 . . . . 5 (𝑐 = 𝐸 → ((𝑐𝑎)𝐹𝑏) = ((𝐸𝑎)𝐹𝑏))
2423mpoeq3dv 7212 . . . 4 (𝑐 = 𝐸 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏)))
2524fveq2d 6649 . . 3 (𝑐 = 𝐸 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))))
26 fveq2 6645 . . . 4 (𝑐 = 𝐸 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸))
2726oveq1d 7150 . . 3 (𝑐 = 𝐸 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
2825, 27eqeq12d 2814 . 2 (𝑐 = 𝐸 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹))))
29 eqid 2798 . 2 (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁))
30 eqid 2798 . 2 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
31 eqid 2798 . 2 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
32 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
33323ad2ant1 1130 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑁 ∈ Fin)
34 eqid 2798 . . . 4 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534symggrp 18520 . . 3 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
36 grpmnd 18102 . . 3 ((SymGrp‘𝑁) ∈ Grp → (SymGrp‘𝑁) ∈ Mnd)
3733, 35, 363syl 18 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (SymGrp‘𝑁) ∈ Mnd)
38 eqid 2798 . . . 4 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
3938, 34, 31symgtrf 18589 . . 3 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
41 eqid 2798 . . . . . 6 (mrCls‘(SubMnd‘(SymGrp‘𝑁))) = (mrCls‘(SubMnd‘(SymGrp‘𝑁)))
4238, 34, 31, 41symggen2 18591 . . . . 5 (𝑁 ∈ Fin → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4332, 42syl 17 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4443eqcomd 2804 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
45443ad2ant1 1130 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
46 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
47463ad2ant1 1130 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑅 ∈ Ring)
48 mdetuni.ff . . . . . 6 (𝜑𝐷:𝐵𝐾)
49483ad2ant1 1130 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐷:𝐵𝐾)
50 simp3 1135 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹𝐵)
5149, 50ffvelrnd 6829 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷𝐹) ∈ 𝐾)
52 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
53 mdetuni.tg . . . . 5 · = (.r𝑅)
54 mdetuni.1r . . . . 5 1 = (1r𝑅)
5552, 53, 54ringlidm 19317 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷𝐹) ∈ 𝐾) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
5647, 51, 55syl2anc 587 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
57 zrhpsgnmhm 20273 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
5846, 32, 57syl2anc 587 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
59 eqid 2798 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6059, 54ringidval 19246 . . . . . . 7 1 = (0g‘(mulGrp‘𝑅))
6129, 60mhm0 17956 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6258, 61syl 17 . . . . 5 (𝜑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
63623ad2ant1 1130 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6463oveq1d 7150 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)) = ( 1 · (𝐷𝐹)))
6534symgid 18521 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6632, 65syl 17 . . . . . . . . . . 11 (𝜑 → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
67663ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
68673ad2ant1 1130 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6968fveq1d 6647 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
70 simp2 1134 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
71 fvresi 6912 . . . . . . . . 9 (𝑎𝑁 → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7270, 71syl 17 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7369, 72eqtr3d 2835 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ((0g‘(SymGrp‘𝑁))‘𝑎) = 𝑎)
7473oveq1d 7150 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏) = (𝑎𝐹𝑏))
7574mpoeq3dva 7210 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
76 mdetuni.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
77 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
7876, 52, 77matbas2i 21027 . . . . . . . 8 (𝐹𝐵𝐹 ∈ (𝐾m (𝑁 × 𝑁)))
79783ad2ant3 1132 . . . . . . 7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 ∈ (𝐾m (𝑁 × 𝑁)))
80 elmapi 8411 . . . . . . 7 (𝐹 ∈ (𝐾m (𝑁 × 𝑁)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
81 ffn 6487 . . . . . . 7 (𝐹:(𝑁 × 𝑁)⟶𝐾𝐹 Fn (𝑁 × 𝑁))
8279, 80, 813syl 18 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 Fn (𝑁 × 𝑁))
83 fnov 7261 . . . . . 6 (𝐹 Fn (𝑁 × 𝑁) ↔ 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8482, 83sylib 221 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8575, 84eqtr4d 2836 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = 𝐹)
8685fveq2d 6649 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = (𝐷𝐹))
8756, 64, 863eqtr4rd 2844 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
88 simp2 1134 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑑 ∈ (Base‘(SymGrp‘𝑁)))
8939sseli 3911 . . . . . . . . . . . . 13 (𝑒 ∈ ran (pmTrsp‘𝑁) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
90893ad2ant3 1132 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
9134, 31, 30symgov 18504 . . . . . . . . . . . 12 ((𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9288, 90, 91syl2anc 587 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9392fveq1d 6647 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
94933ad2ant1 1130 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
9534, 31symgbasf1o 18495 . . . . . . . . . . . 12 (𝑒 ∈ (Base‘(SymGrp‘𝑁)) → 𝑒:𝑁1-1-onto𝑁)
96 f1of 6590 . . . . . . . . . . . 12 (𝑒:𝑁1-1-onto𝑁𝑒:𝑁𝑁)
9790, 95, 963syl 18 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒:𝑁𝑁)
98973ad2ant1 1130 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑒:𝑁𝑁)
99 simp2 1134 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
100 fvco3 6737 . . . . . . . . . 10 ((𝑒:𝑁𝑁𝑎𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10198, 99, 100syl2anc 587 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10294, 101eqtrd 2833 . . . . . . . 8 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
103102oveq1d 7150 . . . . . . 7 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏) = ((𝑑‘(𝑒𝑎))𝐹𝑏))
104103mpoeq3dva 7210 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)))
105104fveq2d 6649 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))))
10634, 31symgbasf 18496 . . . . . 6 (𝑑 ∈ (Base‘(SymGrp‘𝑁)) → 𝑑:𝑁𝑁)
107 eqid 2798 . . . . . . . . 9 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
108107, 38pmtrrn2 18580 . . . . . . . 8 (𝑒 ∈ ran (pmTrsp‘𝑁) → ∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})))
109 mdetuni.0g . . . . . . . . . . . . . 14 0 = (0g𝑅)
110 mdetuni.pg . . . . . . . . . . . . . 14 + = (+g𝑅)
111 mdetuni.al . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
112 mdetuni.li . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
113 mdetuni.sc . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
114 simpll1 1209 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝜑)
115 df-3an 1086 . . . . . . . . . . . . . . . 16 ((𝑐𝑁𝑓𝑁𝑐𝑓) ↔ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓))
116115biimpri 231 . . . . . . . . . . . . . . 15 (((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓) → (𝑐𝑁𝑓𝑁𝑐𝑓))
117116adantl 485 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑐𝑁𝑓𝑁𝑐𝑓))
11879, 80syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
119118adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
120119ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
121 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑑:𝑁𝑁)
122 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
123122adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑓𝑁)
124121, 123ffvelrnd 6829 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑓) ∈ 𝑁)
125 simpr 488 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑏𝑁)
126120, 124, 125fovrnd 7300 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑓)𝐹𝑏) ∈ 𝐾)
127 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
128127adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑐𝑁)
129121, 128ffvelrnd 6829 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑐) ∈ 𝑁)
130120, 129, 125fovrnd 7300 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑐)𝐹𝑏) ∈ 𝐾)
131126, 130jca 515 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (((𝑑𝑓)𝐹𝑏) ∈ 𝐾 ∧ ((𝑑𝑐)𝐹𝑏) ∈ 𝐾))
132118ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
1331323ad2ant1 1130 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
134 simp1lr 1234 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑑:𝑁𝑁)
135 simp2 1134 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
136134, 135ffvelrnd 6829 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → (𝑑𝑎) ∈ 𝑁)
137 simp3 1135 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
138133, 136, 137fovrnd 7300 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) ∈ 𝐾)
13976, 77, 52, 109, 54, 110, 53, 32, 46, 48, 111, 112, 113, 114, 117, 131, 138mdetunilem6 21222 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
140 simpl1 1188 . . . . . . . . . . . . . . 15 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝜑)
141 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑐 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐))
14232adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑁 ∈ Fin)
143 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
144 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
145 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑓)
146107pmtrprfv 18573 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ (𝑐𝑁𝑓𝑁𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
147142, 143, 144, 145, 146syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
148147adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
149141, 148sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑓)
150149fveq2d 6649 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑓))
151150oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
152 iftrue 4431 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
153152adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
154151, 153eqtr4d 2836 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
155 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑓 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓))
156 prcom 4628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑐, 𝑓} = {𝑓, 𝑐}
157156fveq2i 6648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) = ((pmTrsp‘𝑁)‘{𝑓, 𝑐})
158157fveq1i 6646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓)
15932ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑁 ∈ Fin)
160 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑐𝑁𝑓𝑁))
161160simprd 499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑁)
162160simpld 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑁)
163 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑓)
164163necomd 3042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑐)
165107pmtrprfv 18573 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ Fin ∧ (𝑓𝑁𝑐𝑁𝑓𝑐)) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
166159, 161, 162, 164, 165syl13anc 1369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
167158, 166syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = 𝑐)
168155, 167sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑐)
169168fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑐))
170169oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
171 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
172171adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
173170, 172eqtr4d 2836 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
174173adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
175 vex 3444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑎 ∈ V
176175elpr 4548 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ {𝑐, 𝑓} ↔ (𝑎 = 𝑐𝑎 = 𝑓))
177176notbii 323 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ {𝑐, 𝑓} ↔ ¬ (𝑎 = 𝑐𝑎 = 𝑓))
178 ioran 981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝑎 = 𝑐𝑎 = 𝑓) ↔ (¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓))
179177, 178sylbbr 239 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
180179adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
181 prssi 4714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑁𝑓𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
182160, 181syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
183 pr2ne 9416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑁𝑓𝑁) → ({𝑐, 𝑓} ≈ 2o𝑐𝑓))
184160, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ({𝑐, 𝑓} ≈ 2o𝑐𝑓))
185163, 184mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ≈ 2o)
186107pmtrmvd 18576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
187159, 182, 185, 186syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
188187eleq2d 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ 𝑎 ∈ {𝑐, 𝑓}))
189188notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
190189ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
191180, 190mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))
192107pmtrf 18575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
193159, 182, 185, 192syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
194193ffnd 6488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁)
195 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑎𝑁)
196 fnelnfp 6916 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) ≠ 𝑎))
197196necon2bbid 3030 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
198194, 195, 197syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
199198ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
200191, 199mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎)
201200fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑎))
202201oveq1d 7150 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
203 iffalse 4434 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
204203adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
205202, 204eqtr4d 2836 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
206174, 205pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
207 iffalse 4434 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
208207adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
209206, 208eqtr4d 2836 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
210154, 209pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
2112103adant3 1129 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
212211mpoeq3dva 7210 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
213140, 212sylan 583 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
214213fveq2d 6649 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
215 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → (𝑑𝑎) = (𝑑𝑐))
216215oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
217 iftrue 4431 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑐)𝐹𝑏))
218216, 217eqtr4d 2836 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
219 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑓 → (𝑑𝑎) = (𝑑𝑓))
220219oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
221 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑓)𝐹𝑏))
222220, 221eqtr4d 2836 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
223222adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
224 iffalse 4434 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
225224eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
226225adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
227223, 226pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
228 iffalse 4434 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
229227, 228eqtr4d 2836 . . . . . . . . . . . . . . . . . . 19 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
230218, 229pm2.61i 185 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
231230a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
232231mpoeq3ia 7211 . . . . . . . . . . . . . . . 16 (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
233232fveq2i 6648 . . . . . . . . . . . . . . 15 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
234233fveq2i 6648 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
235234a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
236139, 214, 2353eqtr4d 2843 . . . . . . . . . . . 12 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
237 fveq1 6644 . . . . . . . . . . . . . . . 16 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑒𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))
238237fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑑‘(𝑒𝑎)) = (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)))
239238oveq1d 7150 . . . . . . . . . . . . . 14 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝑑‘(𝑒𝑎))𝐹𝑏) = ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))
240239mpoeq3dv 7212 . . . . . . . . . . . . 13 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)))
241240fveqeq2d 6653 . . . . . . . . . . . 12 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
242236, 241syl5ibrcom 250 . . . . . . . . . . 11 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
243242expr 460 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → (𝑐𝑓 → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))))
244243impd 414 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → ((𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
245244rexlimdvva 3253 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
246108, 245syl5 34 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (𝑒 ∈ ran (pmTrsp‘𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
2472463impia 1114 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
248106, 247syl3an2 1161 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
249105, 248eqtrd 2833 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
250249adantr 484 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
251 fveq2 6645 . . . 4 ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
252251adantl 485 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
253 eqid 2798 . . . . . 6 (invg𝑅) = (invg𝑅)
254473ad2ant1 1130 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑅 ∈ Ring)
255583ad2ant1 1130 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2562553ad2ant1 1130 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
25759, 52mgpbas 19238 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑅))
25831, 257mhmf 17953 . . . . . . . 8 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
259256, 258syl 17 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
260259, 88ffvelrnd 6829 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ∈ 𝐾)
261493ad2ant1 1130 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐷:𝐵𝐾)
262 simp13 1202 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐹𝐵)
263261, 262ffvelrnd 6829 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷𝐹) ∈ 𝐾)
26452, 53, 253, 254, 260, 263ringmneg1 19342 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
26559, 53mgpplusg 19236 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
26631, 30, 265mhmlin 17955 . . . . . . . 8 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
267256, 88, 90, 266syl3anc 1368 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
268333ad2ant1 1130 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑁 ∈ Fin)
269 simp3 1135 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ran (pmTrsp‘𝑁))
27034, 31, 38pmtrodpm 20286 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
271268, 269, 270syl2anc 587 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
272 eqid 2798 . . . . . . . . . 10 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
273 eqid 2798 . . . . . . . . . 10 (pmSgn‘𝑁) = (pmSgn‘𝑁)
274272, 273, 54, 31, 253zrhpsgnodpm 20281 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
275254, 268, 271, 274syl3anc 1368 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
276275oveq2d 7151 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )))
27752, 53, 54, 253, 254, 260rngnegr 19341 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )) = ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)))
278267, 276, 2773eqtrrd 2838 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
279278oveq1d 7150 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
280264, 279eqtr3d 2835 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
281280adantr 484 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
282250, 252, 2813eqtrd 2837 . 2 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
283 simp2 1134 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸:𝑁1-1-onto𝑁)
28434, 31elsymgbas 18494 . . . 4 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
28533, 284syl 17 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
286283, 285mpbird 260 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
2877, 14, 21, 28, 29, 30, 31, 37, 40, 45, 87, 282, 286mndind 17984 1 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  wss 3881  ifcif 4425  {csn 4525  {cpr 4527   class class class wbr 5030   I cid 5424   × cxp 5517  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523   Fn wfn 6319  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387  2oc2o 8079  m cmap 8389  cen 8489  Fincfn 8492  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  mrClscmrc 16846  Mndcmnd 17903   MndHom cmhm 17946  SubMndcsubmnd 17947  Grpcgrp 18095  invgcminusg 18096  SymGrpcsymg 18487  pmTrspcpmtr 18561  pmSgncpsgn 18609  pmEvencevpm 18610  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  ℤRHomczrh 20193   Mat cmat 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-ghm 18348  df-gim 18391  df-oppg 18466  df-symg 18488  df-pmtr 18562  df-psgn 18611  df-evpm 18612  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-dsmm 20421  df-frlm 20436  df-mat 21013
This theorem is referenced by:  mdetunilem8  21224
  Copyright terms: Public domain W3C validator