MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem7 Structured version   Visualization version   GIF version

Theorem mdetunilem7 22645
Description: Lemma for mdetuni 22649. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
Assertion
Ref Expression
mdetunilem7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem mdetunilem7
Dummy variables 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6919 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝑎) = (𝑑𝑎))
21oveq1d 7463 . . . . 5 (𝑐 = 𝑑 → ((𝑐𝑎)𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
32mpoeq3dv 7529 . . . 4 (𝑐 = 𝑑 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))
43fveq2d 6924 . . 3 (𝑐 = 𝑑 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))
5 fveq2 6920 . . . 4 (𝑐 = 𝑑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑))
65oveq1d 7463 . . 3 (𝑐 = 𝑑 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)))
74, 6eqeq12d 2756 . 2 (𝑐 = 𝑑 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
8 fveq1 6919 . . . . . 6 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑐𝑎) = ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎))
98oveq1d 7463 . . . . 5 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝑐𝑎)𝐹𝑏) = (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))
109mpoeq3dv 7529 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)))
1110fveq2d 6924 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))))
12 fveq2 6920 . . . 4 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
1312oveq1d 7463 . . 3 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
1411, 13eqeq12d 2756 . 2 (𝑐 = (𝑑(+g‘(SymGrp‘𝑁))𝑒) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹))))
15 fveq1 6919 . . . . . 6 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑐𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
1615oveq1d 7463 . . . . 5 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝑐𝑎)𝐹𝑏) = (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))
1716mpoeq3dv 7529 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)))
1817fveq2d 6924 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))))
19 fveq2 6920 . . . 4 (𝑐 = (0g‘(SymGrp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))))
2019oveq1d 7463 . . 3 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
2118, 20eqeq12d 2756 . 2 (𝑐 = (0g‘(SymGrp‘𝑁)) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹))))
22 fveq1 6919 . . . . . 6 (𝑐 = 𝐸 → (𝑐𝑎) = (𝐸𝑎))
2322oveq1d 7463 . . . . 5 (𝑐 = 𝐸 → ((𝑐𝑎)𝐹𝑏) = ((𝐸𝑎)𝐹𝑏))
2423mpoeq3dv 7529 . . . 4 (𝑐 = 𝐸 → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏)))
2524fveq2d 6924 . . 3 (𝑐 = 𝐸 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))))
26 fveq2 6920 . . . 4 (𝑐 = 𝐸 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸))
2726oveq1d 7463 . . 3 (𝑐 = 𝐸 → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
2825, 27eqeq12d 2756 . 2 (𝑐 = 𝐸 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑐𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑐) · (𝐷𝐹)) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹))))
29 eqid 2740 . 2 (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁))
30 eqid 2740 . 2 (+g‘(SymGrp‘𝑁)) = (+g‘(SymGrp‘𝑁))
31 eqid 2740 . 2 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
32 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
33323ad2ant1 1133 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑁 ∈ Fin)
34 eqid 2740 . . . 4 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3534symggrp 19442 . . 3 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
36 grpmnd 18980 . . 3 ((SymGrp‘𝑁) ∈ Grp → (SymGrp‘𝑁) ∈ Mnd)
3733, 35, 363syl 18 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (SymGrp‘𝑁) ∈ Mnd)
38 eqid 2740 . . . 4 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
3938, 34, 31symgtrf 19511 . . 3 ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ran (pmTrsp‘𝑁) ⊆ (Base‘(SymGrp‘𝑁)))
41 eqid 2740 . . . . . 6 (mrCls‘(SubMnd‘(SymGrp‘𝑁))) = (mrCls‘(SubMnd‘(SymGrp‘𝑁)))
4238, 34, 31, 41symggen2 19513 . . . . 5 (𝑁 ∈ Fin → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4332, 42syl 17 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)) = (Base‘(SymGrp‘𝑁)))
4443eqcomd 2746 . . 3 (𝜑 → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
45443ad2ant1 1133 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (Base‘(SymGrp‘𝑁)) = ((mrCls‘(SubMnd‘(SymGrp‘𝑁)))‘ran (pmTrsp‘𝑁)))
46 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
47463ad2ant1 1133 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝑅 ∈ Ring)
48 mdetuni.ff . . . . . 6 (𝜑𝐷:𝐵𝐾)
49483ad2ant1 1133 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐷:𝐵𝐾)
50 simp3 1138 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹𝐵)
5149, 50ffvelcdmd 7119 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷𝐹) ∈ 𝐾)
52 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
53 mdetuni.tg . . . . 5 · = (.r𝑅)
54 mdetuni.1r . . . . 5 1 = (1r𝑅)
5552, 53, 54ringlidm 20292 . . . 4 ((𝑅 ∈ Ring ∧ (𝐷𝐹) ∈ 𝐾) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
5647, 51, 55syl2anc 583 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( 1 · (𝐷𝐹)) = (𝐷𝐹))
57 zrhpsgnmhm 21625 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
5846, 32, 57syl2anc 583 . . . . . 6 (𝜑 → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
59 eqid 2740 . . . . . . . 8 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6059, 54ringidval 20210 . . . . . . 7 1 = (0g‘(mulGrp‘𝑅))
6129, 60mhm0 18829 . . . . . 6 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6258, 61syl 17 . . . . 5 (𝜑 → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
63623ad2ant1 1133 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = 1 )
6463oveq1d 7463 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)) = ( 1 · (𝐷𝐹)))
6534symgid 19443 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6632, 65syl 17 . . . . . . . . . . 11 (𝜑 → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
67663ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
68673ad2ant1 1133 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
6968fveq1d 6922 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = ((0g‘(SymGrp‘𝑁))‘𝑎))
70 simp2 1137 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
71 fvresi 7207 . . . . . . . . 9 (𝑎𝑁 → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7270, 71syl 17 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (( I ↾ 𝑁)‘𝑎) = 𝑎)
7369, 72eqtr3d 2782 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → ((0g‘(SymGrp‘𝑁))‘𝑎) = 𝑎)
7473oveq1d 7463 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑎𝑁𝑏𝑁) → (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏) = (𝑎𝐹𝑏))
7574mpoeq3dva 7527 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
76 mdetuni.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
77 mdetuni.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
7876, 52, 77matbas2i 22449 . . . . . . . 8 (𝐹𝐵𝐹 ∈ (𝐾m (𝑁 × 𝑁)))
79783ad2ant3 1135 . . . . . . 7 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 ∈ (𝐾m (𝑁 × 𝑁)))
80 elmapi 8907 . . . . . . 7 (𝐹 ∈ (𝐾m (𝑁 × 𝑁)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
81 ffn 6747 . . . . . . 7 (𝐹:(𝑁 × 𝑁)⟶𝐾𝐹 Fn (𝑁 × 𝑁))
8279, 80, 813syl 18 . . . . . 6 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 Fn (𝑁 × 𝑁))
83 fnov 7581 . . . . . 6 (𝐹 Fn (𝑁 × 𝑁) ↔ 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8482, 83sylib 218 . . . . 5 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹 = (𝑎𝑁, 𝑏𝑁 ↦ (𝑎𝐹𝑏)))
8575, 84eqtr4d 2783 . . . 4 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏)) = 𝐹)
8685fveq2d 6924 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = (𝐷𝐹))
8756, 64, 863eqtr4rd 2791 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((0g‘(SymGrp‘𝑁))‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) · (𝐷𝐹)))
88 simp2 1137 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑑 ∈ (Base‘(SymGrp‘𝑁)))
8939sseli 4004 . . . . . . . . . . . . 13 (𝑒 ∈ ran (pmTrsp‘𝑁) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
90893ad2ant3 1135 . . . . . . . . . . . 12 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ (Base‘(SymGrp‘𝑁)))
9134, 31, 30symgov 19425 . . . . . . . . . . . 12 ((𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9288, 90, 91syl2anc 583 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑑(+g‘(SymGrp‘𝑁))𝑒) = (𝑑𝑒))
9392fveq1d 6922 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
94933ad2ant1 1133 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = ((𝑑𝑒)‘𝑎))
9534, 31symgbasf1o 19416 . . . . . . . . . . . 12 (𝑒 ∈ (Base‘(SymGrp‘𝑁)) → 𝑒:𝑁1-1-onto𝑁)
96 f1of 6862 . . . . . . . . . . . 12 (𝑒:𝑁1-1-onto𝑁𝑒:𝑁𝑁)
9790, 95, 963syl 18 . . . . . . . . . . 11 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒:𝑁𝑁)
98973ad2ant1 1133 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑒:𝑁𝑁)
99 simp2 1137 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
100 fvco3 7021 . . . . . . . . . 10 ((𝑒:𝑁𝑁𝑎𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10198, 99, 100syl2anc 583 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
10294, 101eqtrd 2780 . . . . . . . 8 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎) = (𝑑‘(𝑒𝑎)))
103102oveq1d 7463 . . . . . . 7 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ 𝑎𝑁𝑏𝑁) → (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏) = ((𝑑‘(𝑒𝑎))𝐹𝑏))
104103mpoeq3dva 7527 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)))
105104fveq2d 6924 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))))
10634, 31symgbasf 19417 . . . . . 6 (𝑑 ∈ (Base‘(SymGrp‘𝑁)) → 𝑑:𝑁𝑁)
107 eqid 2740 . . . . . . . . 9 (pmTrsp‘𝑁) = (pmTrsp‘𝑁)
108107, 38pmtrrn2 19502 . . . . . . . 8 (𝑒 ∈ ran (pmTrsp‘𝑁) → ∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})))
109 mdetuni.0g . . . . . . . . . . . . . 14 0 = (0g𝑅)
110 mdetuni.pg . . . . . . . . . . . . . 14 + = (+g𝑅)
111 mdetuni.al . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
112 mdetuni.li . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
113 mdetuni.sc . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
114 simpll1 1212 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝜑)
115 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑐𝑁𝑓𝑁𝑐𝑓) ↔ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓))
116115biimpri 228 . . . . . . . . . . . . . . 15 (((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓) → (𝑐𝑁𝑓𝑁𝑐𝑓))
117116adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑐𝑁𝑓𝑁𝑐𝑓))
11879, 80syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
119118adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
120119ad2antrr 725 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
121 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑑:𝑁𝑁)
122 simprlr 779 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
123122adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑓𝑁)
124121, 123ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑓) ∈ 𝑁)
125 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑏𝑁)
126120, 124, 125fovcdmd 7622 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑓)𝐹𝑏) ∈ 𝐾)
127 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
128127adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → 𝑐𝑁)
129121, 128ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (𝑑𝑐) ∈ 𝑁)
130120, 129, 125fovcdmd 7622 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → ((𝑑𝑐)𝐹𝑏) ∈ 𝐾)
131126, 130jca 511 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑏𝑁) → (((𝑑𝑓)𝐹𝑏) ∈ 𝐾 ∧ ((𝑑𝑐)𝐹𝑏) ∈ 𝐾))
132118ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
1331323ad2ant1 1133 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝐹:(𝑁 × 𝑁)⟶𝐾)
134 simp1lr 1237 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑑:𝑁𝑁)
135 simp2 1137 . . . . . . . . . . . . . . . 16 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑎𝑁)
136134, 135ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → (𝑑𝑎) ∈ 𝑁)
137 simp3 1138 . . . . . . . . . . . . . . 15 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → 𝑏𝑁)
138133, 136, 137fovcdmd 7622 . . . . . . . . . . . . . 14 (((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) ∈ 𝐾)
13976, 77, 52, 109, 54, 110, 53, 32, 46, 48, 111, 112, 113, 114, 117, 131, 138mdetunilem6 22644 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
140 simpl1 1191 . . . . . . . . . . . . . . 15 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → 𝜑)
141 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑐 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐))
14232adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑁 ∈ Fin)
143 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑁)
144 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑓𝑁)
145 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → 𝑐𝑓)
146107pmtrprfv 19495 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ (𝑐𝑁𝑓𝑁𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
147142, 143, 144, 145, 146syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
148147adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑐) = 𝑓)
149141, 148sylan9eqr 2802 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑓)
150149fveq2d 6924 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑓))
151150oveq1d 7463 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
152 iftrue 4554 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
153152adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑓)𝐹𝑏))
154151, 153eqtr4d 2783 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
155 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑓 → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓))
156 prcom 4757 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {𝑐, 𝑓} = {𝑓, 𝑐}
157156fveq2i 6923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) = ((pmTrsp‘𝑁)‘{𝑓, 𝑐})
158157fveq1i 6921 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓)
15932ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑁 ∈ Fin)
160 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑐𝑁𝑓𝑁))
161160simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑁)
162160simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑁)
163 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑐𝑓)
164163necomd 3002 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑓𝑐)
165107pmtrprfv 19495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ Fin ∧ (𝑓𝑁𝑐𝑁𝑓𝑐)) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
166159, 161, 162, 164, 165syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑓, 𝑐})‘𝑓) = 𝑐)
167158, 166eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑓) = 𝑐)
168155, 167sylan9eqr 2802 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑐)
169168fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑐))
170169oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
171 iftrue 4554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
172171adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑐)𝐹𝑏))
173170, 172eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
174173adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
175 vex 3492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 𝑎 ∈ V
176175elpr 4672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ∈ {𝑐, 𝑓} ↔ (𝑎 = 𝑐𝑎 = 𝑓))
177176notbii 320 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑎 ∈ {𝑐, 𝑓} ↔ ¬ (𝑎 = 𝑐𝑎 = 𝑓))
178 ioran 984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (¬ (𝑎 = 𝑐𝑎 = 𝑓) ↔ (¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓))
179177, 178sylbbr 236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
180179adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ {𝑐, 𝑓})
181 prssi 4846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑐𝑁𝑓𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
182160, 181syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ⊆ 𝑁)
183 pr2ne 10073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑐𝑁𝑓𝑁) → ({𝑐, 𝑓} ≈ 2o𝑐𝑓))
184160, 183syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ({𝑐, 𝑓} ≈ 2o𝑐𝑓))
185163, 184mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → {𝑐, 𝑓} ≈ 2o)
186107pmtrmvd 19498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
187159, 182, 185, 186syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) = {𝑐, 𝑓})
188187eleq2d 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ 𝑎 ∈ {𝑐, 𝑓}))
189188notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
190189ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ ¬ 𝑎 ∈ {𝑐, 𝑓}))
191180, 190mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ))
192107pmtrf 19497 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ {𝑐, 𝑓} ⊆ 𝑁 ∧ {𝑐, 𝑓} ≈ 2o) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
193159, 182, 185, 192syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}):𝑁𝑁)
194193ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁)
195 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → 𝑎𝑁)
196 fnelnfp 7211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → (𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I ) ↔ (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) ≠ 𝑎))
197196necon2bbid 2990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((pmTrsp‘𝑁)‘{𝑐, 𝑓}) Fn 𝑁𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
198194, 195, 197syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
199198ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎 ↔ ¬ 𝑎 ∈ dom (((pmTrsp‘𝑁)‘{𝑐, 𝑓}) ∖ I )))
200191, 199mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎) = 𝑎)
201200fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)) = (𝑑𝑎))
202201oveq1d 7463 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = ((𝑑𝑎)𝐹𝑏))
203 iffalse 4557 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
204203adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
205202, 204eqtr4d 2783 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) ∧ ¬ 𝑎 = 𝑓) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
206174, 205pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
207 iffalse 4557 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
208207adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
209206, 208eqtr4d 2783 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) ∧ ¬ 𝑎 = 𝑐) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
210154, 209pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
2112103adant3 1132 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) ∧ 𝑎𝑁𝑏𝑁) → ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
212211mpoeq3dva 7527 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
213140, 212sylan 579 . . . . . . . . . . . . . 14 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
214213fveq2d 6924 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑓)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑐)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
215 fveq2 6920 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑐 → (𝑑𝑎) = (𝑑𝑐))
216215oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑐)𝐹𝑏))
217 iftrue 4554 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = ((𝑑𝑐)𝐹𝑏))
218216, 217eqtr4d 2783 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
219 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑓 → (𝑑𝑎) = (𝑑𝑓))
220219oveq1d 7463 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = ((𝑑𝑓)𝐹𝑏))
221 iftrue 4554 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑓)𝐹𝑏))
222220, 221eqtr4d 2783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
223222adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
224 iffalse 4557 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 = 𝑓 → if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)) = ((𝑑𝑎)𝐹𝑏))
225224eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . 22 𝑎 = 𝑓 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
226225adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑎 = 𝑐 ∧ ¬ 𝑎 = 𝑓) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
227223, 226pm2.61dan 812 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
228 iffalse 4557 . . . . . . . . . . . . . . . . . . . 20 𝑎 = 𝑐 → if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))) = if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
229227, 228eqtr4d 2783 . . . . . . . . . . . . . . . . . . 19 𝑎 = 𝑐 → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
230218, 229pm2.61i 182 . . . . . . . . . . . . . . . . . 18 ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))
231230a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑎𝑁𝑏𝑁) → ((𝑑𝑎)𝐹𝑏) = if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
232231mpoeq3ia 7528 . . . . . . . . . . . . . . . 16 (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))
233232fveq2i 6923 . . . . . . . . . . . . . . 15 (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))
234233fveq2i 6923 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏))))))
235234a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑐, ((𝑑𝑐)𝐹𝑏), if(𝑎 = 𝑓, ((𝑑𝑓)𝐹𝑏), ((𝑑𝑎)𝐹𝑏)))))))
236139, 214, 2353eqtr4d 2790 . . . . . . . . . . . 12 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
237 fveq1 6919 . . . . . . . . . . . . . . . 16 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑒𝑎) = (((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))
238237fveq2d 6924 . . . . . . . . . . . . . . 15 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑑‘(𝑒𝑎)) = (𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎)))
239238oveq1d 7463 . . . . . . . . . . . . . 14 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝑑‘(𝑒𝑎))𝐹𝑏) = ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))
240239mpoeq3dv 7529 . . . . . . . . . . . . 13 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏)) = (𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏)))
241240fveqeq2d 6928 . . . . . . . . . . . 12 (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) ↔ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(((pmTrsp‘𝑁)‘{𝑐, 𝑓})‘𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
242236, 241syl5ibrcom 247 . . . . . . . . . . 11 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ ((𝑐𝑁𝑓𝑁) ∧ 𝑐𝑓)) → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
243242expr 456 . . . . . . . . . 10 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → (𝑐𝑓 → (𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓}) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))))
244243impd 410 . . . . . . . . 9 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) ∧ (𝑐𝑁𝑓𝑁)) → ((𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
245244rexlimdvva 3219 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (∃𝑐𝑁𝑓𝑁 (𝑐𝑓𝑒 = ((pmTrsp‘𝑁)‘{𝑐, 𝑓})) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
246108, 245syl5 34 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁) → (𝑒 ∈ ran (pmTrsp‘𝑁) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))))))
2472463impia 1117 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑:𝑁𝑁𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
248106, 247syl3an2 1164 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑‘(𝑒𝑎))𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
249105, 248eqtrd 2780 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
250249adantr 480 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))))
251 fveq2 6920 . . . 4 ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹)) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
252251adantl 481 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏)))) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
253 eqid 2740 . . . . . 6 (invg𝑅) = (invg𝑅)
254473ad2ant1 1133 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑅 ∈ Ring)
255583ad2ant1 1133 . . . . . . . . 9 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
2562553ad2ant1 1133 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)))
25759, 52mgpbas 20167 . . . . . . . . 9 𝐾 = (Base‘(mulGrp‘𝑅))
25831, 257mhmf 18824 . . . . . . . 8 (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
259256, 258syl 17 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)):(Base‘(SymGrp‘𝑁))⟶𝐾)
260259, 88ffvelcdmd 7119 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) ∈ 𝐾)
261493ad2ant1 1133 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐷:𝐵𝐾)
262 simp13 1205 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝐹𝐵)
263261, 262ffvelcdmd 7119 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (𝐷𝐹) ∈ 𝐾)
26452, 53, 253, 254, 260, 263ringmneg1 20327 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))))
26559, 53mgpplusg 20165 . . . . . . . . 9 · = (+g‘(mulGrp‘𝑅))
26631, 30, 265mhmlin 18828 . . . . . . . 8 ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ (Base‘(SymGrp‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
267256, 88, 90, 266syl3anc 1371 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)))
268333ad2ant1 1133 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑁 ∈ Fin)
269 simp3 1138 . . . . . . . . . 10 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ran (pmTrsp‘𝑁))
27034, 31, 38pmtrodpm 21638 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
271268, 269, 270syl2anc 583 . . . . . . . . 9 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁)))
272 eqid 2740 . . . . . . . . . 10 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
273 eqid 2740 . . . . . . . . . 10 (pmSgn‘𝑁) = (pmSgn‘𝑁)
274272, 273, 54, 31, 253zrhpsgnodpm 21633 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑒 ∈ ((Base‘(SymGrp‘𝑁)) ∖ (pmEven‘𝑁))) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
275254, 268, 271, 274syl3anc 1371 . . . . . . . 8 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒) = ((invg𝑅)‘ 1 ))
276275oveq2d 7464 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑒)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )))
27752, 53, 54, 253, 254, 260ringnegr 20326 . . . . . . 7 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · ((invg𝑅)‘ 1 )) = ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)))
278267, 276, 2773eqtrrd 2785 . . . . . 6 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)))
279278oveq1d 7463 . . . . 5 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → (((invg𝑅)‘(((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑)) · (𝐷𝐹)) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
280264, 279eqtr3d 2782 . . . 4 (((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
281280adantr 480 . . 3 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → ((invg𝑅)‘((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
282250, 252, 2813eqtrd 2784 . 2 ((((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) ∧ 𝑑 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑒 ∈ ran (pmTrsp‘𝑁)) ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝑑𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑑) · (𝐷𝐹))) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ (((𝑑(+g‘(SymGrp‘𝑁))𝑒)‘𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(𝑑(+g‘(SymGrp‘𝑁))𝑒)) · (𝐷𝐹)))
283 simp2 1137 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸:𝑁1-1-onto𝑁)
28434, 31elsymgbas 19415 . . . 4 (𝑁 ∈ Fin → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
28533, 284syl 17 . . 3 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐸 ∈ (Base‘(SymGrp‘𝑁)) ↔ 𝐸:𝑁1-1-onto𝑁))
286283, 285mpbird 257 . 2 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → 𝐸 ∈ (Base‘(SymGrp‘𝑁)))
2877, 14, 21, 28, 29, 30, 31, 37, 40, 45, 87, 282, 286mndind 18863 1 ((𝜑𝐸:𝑁1-1-onto𝑁𝐹𝐵) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ ((𝐸𝑎)𝐹𝑏))) = ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝐸) · (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  ifcif 4548  {csn 4648  {cpr 4650   class class class wbr 5166   I cid 5592   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712  2oc2o 8516  m cmap 8884  cen 9000  Fincfn 9003  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  mrClscmrc 17641  Mndcmnd 18772   MndHom cmhm 18816  SubMndcsubmnd 18817  Grpcgrp 18973  invgcminusg 18974  SymGrpcsymg 19410  pmTrspcpmtr 19483  pmSgncpsgn 19531  pmEvencevpm 19532  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  ℤRHomczrh 21533   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-evpm 19534  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  mdetunilem8  22646
  Copyright terms: Public domain W3C validator