MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1OLD Structured version   Visualization version   GIF version

Theorem sdom1OLD 9245
Description: Obsolete version of sdom1 9244 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sdom1OLD (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1OLD
StepHypRef Expression
1 domnsym 9101 . . . . 5 (1o𝐴 → ¬ 𝐴 ≺ 1o)
21con2i 139 . . . 4 (𝐴 ≺ 1o → ¬ 1o𝐴)
3 0sdom1dom 9240 . . . 4 (∅ ≺ 𝐴 ↔ 1o𝐴)
42, 3sylnibr 328 . . 3 (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴)
5 relsdom 8948 . . . . 5 Rel ≺
65brrelex1i 5732 . . . 4 (𝐴 ≺ 1o𝐴 ∈ V)
7 0sdomg 9106 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
87necon2bbid 2984 . . . 4 (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
96, 8syl 17 . . 3 (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
104, 9mpbird 256 . 2 (𝐴 ≺ 1o𝐴 = ∅)
11 1n0 8490 . . . 4 1o ≠ ∅
12 1oex 8478 . . . . 5 1o ∈ V
13120sdom 9109 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
1411, 13mpbir 230 . . 3 ∅ ≺ 1o
15 breq1 5151 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
1614, 15mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
1710, 16impbii 208 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  c0 4322   class class class wbr 5148  1oc1o 8461  cdom 8939  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator