MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1OLD Structured version   Visualization version   GIF version

Theorem sdom1OLD 9256
Description: Obsolete version of sdom1 9255 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sdom1OLD (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1OLD
StepHypRef Expression
1 domnsym 9118 . . . . 5 (1o𝐴 → ¬ 𝐴 ≺ 1o)
21con2i 139 . . . 4 (𝐴 ≺ 1o → ¬ 1o𝐴)
3 0sdom1dom 9251 . . . 4 (∅ ≺ 𝐴 ↔ 1o𝐴)
42, 3sylnibr 329 . . 3 (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴)
5 relsdom 8971 . . . . 5 Rel ≺
65brrelex1i 5715 . . . 4 (𝐴 ≺ 1o𝐴 ∈ V)
7 0sdomg 9123 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
87necon2bbid 2976 . . . 4 (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
96, 8syl 17 . . 3 (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
104, 9mpbird 257 . 2 (𝐴 ≺ 1o𝐴 = ∅)
11 1n0 8505 . . . 4 1o ≠ ∅
12 1oex 8495 . . . . 5 1o ∈ V
13120sdom 9126 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
1411, 13mpbir 231 . . 3 ∅ ≺ 1o
15 breq1 5127 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
1614, 15mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
1710, 16impbii 209 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313   class class class wbr 5124  1oc1o 8478  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator