![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of sdom1 9244 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sdom1OLD | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 9101 | . . . . 5 ⊢ (1o ≼ 𝐴 → ¬ 𝐴 ≺ 1o) | |
2 | 1 | con2i 139 | . . . 4 ⊢ (𝐴 ≺ 1o → ¬ 1o ≼ 𝐴) |
3 | 0sdom1dom 9240 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
4 | 2, 3 | sylnibr 328 | . . 3 ⊢ (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴) |
5 | relsdom 8948 | . . . . 5 ⊢ Rel ≺ | |
6 | 5 | brrelex1i 5732 | . . . 4 ⊢ (𝐴 ≺ 1o → 𝐴 ∈ V) |
7 | 0sdomg 9106 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
8 | 7 | necon2bbid 2984 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
10 | 4, 9 | mpbird 256 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
11 | 1n0 8490 | . . . 4 ⊢ 1o ≠ ∅ | |
12 | 1oex 8478 | . . . . 5 ⊢ 1o ∈ V | |
13 | 12 | 0sdom 9109 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
14 | 11, 13 | mpbir 230 | . . 3 ⊢ ∅ ≺ 1o |
15 | breq1 5151 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
16 | 14, 15 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
17 | 10, 16 | impbii 208 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4322 class class class wbr 5148 1oc1o 8461 ≼ cdom 8939 ≺ csdm 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |