| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdom1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of sdom1 9189 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sdom1OLD | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9067 | . . . . 5 ⊢ (1o ≼ 𝐴 → ¬ 𝐴 ≺ 1o) | |
| 2 | 1 | con2i 139 | . . . 4 ⊢ (𝐴 ≺ 1o → ¬ 1o ≼ 𝐴) |
| 3 | 0sdom1dom 9185 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
| 4 | 2, 3 | sylnibr 329 | . . 3 ⊢ (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴) |
| 5 | relsdom 8925 | . . . . 5 ⊢ Rel ≺ | |
| 6 | 5 | brrelex1i 5694 | . . . 4 ⊢ (𝐴 ≺ 1o → 𝐴 ∈ V) |
| 7 | 0sdomg 9070 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 8 | 7 | necon2bbid 2968 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
| 9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
| 10 | 4, 9 | mpbird 257 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
| 11 | 1n0 8452 | . . . 4 ⊢ 1o ≠ ∅ | |
| 12 | 1oex 8444 | . . . . 5 ⊢ 1o ∈ V | |
| 13 | 12 | 0sdom 9072 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
| 14 | 11, 13 | mpbir 231 | . . 3 ⊢ ∅ ≺ 1o |
| 15 | breq1 5110 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
| 16 | 14, 15 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
| 17 | 10, 16 | impbii 209 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 class class class wbr 5107 1oc1o 8427 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |