![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdom1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of sdom1 9245 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sdom1OLD | ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 9102 | . . . . 5 ⊢ (1o ≼ 𝐴 → ¬ 𝐴 ≺ 1o) | |
2 | 1 | con2i 139 | . . . 4 ⊢ (𝐴 ≺ 1o → ¬ 1o ≼ 𝐴) |
3 | 0sdom1dom 9241 | . . . 4 ⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | |
4 | 2, 3 | sylnibr 329 | . . 3 ⊢ (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴) |
5 | relsdom 8949 | . . . . 5 ⊢ Rel ≺ | |
6 | 5 | brrelex1i 5732 | . . . 4 ⊢ (𝐴 ≺ 1o → 𝐴 ∈ V) |
7 | 0sdomg 9107 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
8 | 7 | necon2bbid 2983 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
9 | 6, 8 | syl 17 | . . 3 ⊢ (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴)) |
10 | 4, 9 | mpbird 257 | . 2 ⊢ (𝐴 ≺ 1o → 𝐴 = ∅) |
11 | 1n0 8491 | . . . 4 ⊢ 1o ≠ ∅ | |
12 | 1oex 8479 | . . . . 5 ⊢ 1o ∈ V | |
13 | 12 | 0sdom 9110 | . . . 4 ⊢ (∅ ≺ 1o ↔ 1o ≠ ∅) |
14 | 11, 13 | mpbir 230 | . . 3 ⊢ ∅ ≺ 1o |
15 | breq1 5151 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o)) | |
16 | 14, 15 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≺ 1o) |
17 | 10, 16 | impbii 208 | 1 ⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∅c0 4322 class class class wbr 5148 1oc1o 8462 ≼ cdom 8940 ≺ csdm 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |