MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom1OLD Structured version   Visualization version   GIF version

Theorem sdom1OLD 9059
Description: Obsolete version of sdom1 9058 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sdom1OLD (𝐴 ≺ 1o𝐴 = ∅)

Proof of Theorem sdom1OLD
StepHypRef Expression
1 domnsym 8919 . . . . 5 (1o𝐴 → ¬ 𝐴 ≺ 1o)
21con2i 139 . . . 4 (𝐴 ≺ 1o → ¬ 1o𝐴)
3 0sdom1dom 9054 . . . 4 (∅ ≺ 𝐴 ↔ 1o𝐴)
42, 3sylnibr 329 . . 3 (𝐴 ≺ 1o → ¬ ∅ ≺ 𝐴)
5 relsdom 8768 . . . . 5 Rel ≺
65brrelex1i 5650 . . . 4 (𝐴 ≺ 1o𝐴 ∈ V)
7 0sdomg 8924 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
87necon2bbid 2984 . . . 4 (𝐴 ∈ V → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
96, 8syl 17 . . 3 (𝐴 ≺ 1o → (𝐴 = ∅ ↔ ¬ ∅ ≺ 𝐴))
104, 9mpbird 257 . 2 (𝐴 ≺ 1o𝐴 = ∅)
11 1n0 8346 . . . 4 1o ≠ ∅
12 1oex 8335 . . . . 5 1o ∈ V
13120sdom 8927 . . . 4 (∅ ≺ 1o ↔ 1o ≠ ∅)
1411, 13mpbir 230 . . 3 ∅ ≺ 1o
15 breq1 5083 . . 3 (𝐴 = ∅ → (𝐴 ≺ 1o ↔ ∅ ≺ 1o))
1614, 15mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≺ 1o)
1710, 16impbii 208 1 (𝐴 ≺ 1o𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1538  wcel 2103  wne 2940  Vcvv 3436  c0 4261   class class class wbr 5080  1oc1o 8318  cdom 8759  csdm 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1968  ax-7 2008  ax-8 2105  ax-9 2113  ax-10 2134  ax-11 2151  ax-12 2168  ax-ext 2706  ax-sep 5231  ax-nul 5238  ax-pow 5296  ax-pr 5360  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2727  df-clel 2813  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3226  df-v 3438  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4844  df-br 5081  df-opab 5143  df-id 5496  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-suc 6283  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-1o 8325  df-er 8526  df-en 8762  df-dom 8763  df-sdom 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator