MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Visualization version   GIF version

Theorem dchrelbas4 27095
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
Assertion
Ref Expression
dchrelbas4 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝐷
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dchrelbas4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
31, 2dchrrcl 27092 . . 3 (𝑋𝐷𝑁 ∈ ℕ)
4 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
5 eqid 2724 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
6 eqid 2724 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
7 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
81, 4, 5, 6, 7, 2dchrelbas2 27089 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))))
9 nnnn0 12477 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑁 ∈ ℕ0)
11 dchrelbas4.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
124, 5, 11znzrhfo 21412 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fveq2 6882 . . . . . . . . . 10 ((𝐿𝑥) = 𝑦 → (𝑋‘(𝐿𝑥)) = (𝑋𝑦))
1413neeq1d 2992 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
15 eleq1 2813 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍)))
1614, 15imbi12d 344 . . . . . . . 8 ((𝐿𝑥) = 𝑦 → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1716cbvfo 7280 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1810, 12, 173syl 18 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
19 df-ne 2933 . . . . . . . . . 10 ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0)
2019a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0))
214, 6, 11znunit 21428 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
2210, 21sylan 579 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
23 1red 11213 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
25 simpll 764 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
2625nnzd 12583 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
27 nnne0 12244 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
28 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2928necon3ai 2957 . . . . . . . . . . . . . . 15 (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
3025, 27, 293syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
31 gcdn0cl 16442 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ)
3224, 26, 30, 31syl21anc 835 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ)
3332nnred 12225 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ)
3432nnge1d 12258 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁))
3523, 33, 34leltned 11365 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1))
3635necon2bbid 2976 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3722, 36bitrd 279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3820, 37imbi12d 344 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))))
39 con34b 316 . . . . . . . 8 ((1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))
4038, 39bitr4di 289 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4140ralbidva 3167 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4218, 41bitr3d 281 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4342pm5.32da 578 . . . 4 (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
448, 43bitrd 279 . . 3 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
453, 44biadanii 819 . 2 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
46 3anass 1092 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
4745, 46bitr4i 278 1 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053   class class class wbr 5139  ontowfo 6532  cfv 6534  (class class class)co 7402  0cc0 11107  1c1 11108   < clt 11246  cn 12210  0cn0 12470  cz 12556   gcd cgcd 16434  Basecbs 17145   MndHom cmhm 18703  mulGrpcmgp 20031  Unitcui 20249  fldccnfld 21230  ℤRHomczrh 21356  ℤ/nczn 21359  DChrcdchr 27084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-ec 8702  df-qs 8706  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-rp 12973  df-fz 13483  df-fl 13755  df-mod 13833  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-dvds 16197  df-gcd 16435  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-0g 17388  df-imas 17455  df-qus 17456  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-subg 19042  df-nsg 19043  df-eqg 19044  df-ghm 19131  df-cmn 19694  df-abl 19695  df-mgp 20032  df-rng 20050  df-ur 20079  df-ring 20132  df-cring 20133  df-oppr 20228  df-dvdsr 20251  df-unit 20252  df-rhm 20366  df-subrng 20438  df-subrg 20463  df-lmod 20700  df-lss 20771  df-lsp 20811  df-sra 21013  df-rgmod 21014  df-lidl 21059  df-rsp 21060  df-2idl 21099  df-cnfld 21231  df-zring 21304  df-zrh 21360  df-zn 21363  df-dchr 27085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator