MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Visualization version   GIF version

Theorem dchrelbas4 26296
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
Assertion
Ref Expression
dchrelbas4 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝐷
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dchrelbas4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
31, 2dchrrcl 26293 . . 3 (𝑋𝐷𝑁 ∈ ℕ)
4 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
5 eqid 2738 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
6 eqid 2738 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
7 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
81, 4, 5, 6, 7, 2dchrelbas2 26290 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))))
9 nnnn0 12170 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑁 ∈ ℕ0)
11 dchrelbas4.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
124, 5, 11znzrhfo 20667 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fveq2 6756 . . . . . . . . . 10 ((𝐿𝑥) = 𝑦 → (𝑋‘(𝐿𝑥)) = (𝑋𝑦))
1413neeq1d 3002 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
15 eleq1 2826 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍)))
1614, 15imbi12d 344 . . . . . . . 8 ((𝐿𝑥) = 𝑦 → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1716cbvfo 7141 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1810, 12, 173syl 18 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
19 df-ne 2943 . . . . . . . . . 10 ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0)
2019a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0))
214, 6, 11znunit 20683 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
2210, 21sylan 579 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
23 1red 10907 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
25 simpll 763 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
2625nnzd 12354 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
27 nnne0 11937 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
28 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2928necon3ai 2967 . . . . . . . . . . . . . . 15 (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
3025, 27, 293syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
31 gcdn0cl 16137 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ)
3224, 26, 30, 31syl21anc 834 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ)
3332nnred 11918 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ)
3432nnge1d 11951 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁))
3523, 33, 34leltned 11058 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1))
3635necon2bbid 2986 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3722, 36bitrd 278 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3820, 37imbi12d 344 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))))
39 con34b 315 . . . . . . . 8 ((1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))
4038, 39bitr4di 288 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4140ralbidva 3119 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4218, 41bitr3d 280 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4342pm5.32da 578 . . . 4 (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
448, 43bitrd 278 . . 3 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
453, 44biadanii 818 . 2 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
46 3anass 1093 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
4745, 46bitr4i 277 1 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  ontowfo 6416  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   < clt 10940  cn 11903  0cn0 12163  cz 12249   gcd cgcd 16129  Basecbs 16840   MndHom cmhm 18343  mulGrpcmgp 19635  Unitcui 19796  fldccnfld 20510  ℤRHomczrh 20613  ℤ/nczn 20616  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416  df-cnfld 20511  df-zring 20583  df-zrh 20617  df-zn 20620  df-dchr 26286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator