MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Visualization version   GIF version

Theorem dchrelbas4 27160
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
Assertion
Ref Expression
dchrelbas4 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝐷
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dchrelbas4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
31, 2dchrrcl 27157 . . 3 (𝑋𝐷𝑁 ∈ ℕ)
4 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
5 eqid 2730 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
6 eqid 2730 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
7 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
81, 4, 5, 6, 7, 2dchrelbas2 27154 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))))
9 nnnn0 12455 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑁 ∈ ℕ0)
11 dchrelbas4.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
124, 5, 11znzrhfo 21463 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fveq2 6860 . . . . . . . . . 10 ((𝐿𝑥) = 𝑦 → (𝑋‘(𝐿𝑥)) = (𝑋𝑦))
1413neeq1d 2985 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
15 eleq1 2817 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍)))
1614, 15imbi12d 344 . . . . . . . 8 ((𝐿𝑥) = 𝑦 → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1716cbvfo 7266 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1810, 12, 173syl 18 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
19 df-ne 2927 . . . . . . . . . 10 ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0)
2019a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0))
214, 6, 11znunit 21479 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
2210, 21sylan 580 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
23 1red 11181 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
25 simpll 766 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
2625nnzd 12562 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
27 nnne0 12221 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
28 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2928necon3ai 2951 . . . . . . . . . . . . . . 15 (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
3025, 27, 293syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
31 gcdn0cl 16478 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ)
3224, 26, 30, 31syl21anc 837 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ)
3332nnred 12202 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ)
3432nnge1d 12235 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁))
3523, 33, 34leltned 11333 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1))
3635necon2bbid 2969 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3722, 36bitrd 279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3820, 37imbi12d 344 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))))
39 con34b 316 . . . . . . . 8 ((1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))
4038, 39bitr4di 289 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4140ralbidva 3155 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4218, 41bitr3d 281 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4342pm5.32da 579 . . . 4 (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
448, 43bitrd 279 . . 3 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
453, 44biadanii 821 . 2 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
46 3anass 1094 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
4745, 46bitr4i 278 1 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045   class class class wbr 5109  ontowfo 6511  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075   < clt 11214  cn 12187  0cn0 12448  cz 12535   gcd cgcd 16470  Basecbs 17185   MndHom cmhm 18714  mulGrpcmgp 20055  Unitcui 20270  fldccnfld 21270  ℤRHomczrh 21415  ℤ/nczn 21418  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-rp 12958  df-fz 13475  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229  df-gcd 16471  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-imas 17477  df-qus 17478  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-dchr 27150
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator