MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Visualization version   GIF version

Theorem dchrelbas4 27305
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/n to the multiplicative monoid of , which is zero off the group of units of ℤ/n. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrelbas4.l 𝐿 = (ℤRHom‘𝑍)
Assertion
Ref Expression
dchrelbas4 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Distinct variable groups:   𝑥,𝐿   𝑥,𝑁   𝑥,𝑋   𝑥,𝑍   𝑥,𝐷
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem dchrelbas4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4 𝐺 = (DChr‘𝑁)
2 dchrmhm.b . . . 4 𝐷 = (Base‘𝐺)
31, 2dchrrcl 27302 . . 3 (𝑋𝐷𝑁 ∈ ℕ)
4 dchrmhm.z . . . . 5 𝑍 = (ℤ/nℤ‘𝑁)
5 eqid 2740 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
6 eqid 2740 . . . . 5 (Unit‘𝑍) = (Unit‘𝑍)
7 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
81, 4, 5, 6, 7, 2dchrelbas2 27299 . . . 4 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))))
9 nnnn0 12560 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
109adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → 𝑁 ∈ ℕ0)
11 dchrelbas4.l . . . . . . . 8 𝐿 = (ℤRHom‘𝑍)
124, 5, 11znzrhfo 21589 . . . . . . 7 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
13 fveq2 6920 . . . . . . . . . 10 ((𝐿𝑥) = 𝑦 → (𝑋‘(𝐿𝑥)) = (𝑋𝑦))
1413neeq1d 3006 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ (𝑋𝑦) ≠ 0))
15 eleq1 2832 . . . . . . . . 9 ((𝐿𝑥) = 𝑦 → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍)))
1614, 15imbi12d 344 . . . . . . . 8 ((𝐿𝑥) = 𝑦 → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1716cbvfo 7325 . . . . . . 7 (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
1810, 12, 173syl 18 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))
19 df-ne 2947 . . . . . . . . . 10 ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0)
2019a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿𝑥)) = 0))
214, 6, 11znunit 21605 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
2210, 21sylan 579 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1))
23 1red 11291 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
25 simpll 766 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
2625nnzd 12666 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ)
27 nnne0 12327 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
28 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2928necon3ai 2971 . . . . . . . . . . . . . . 15 (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
3025, 27, 293syl 18 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0))
31 gcdn0cl 16548 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ)
3224, 26, 30, 31syl21anc 837 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ)
3332nnred 12308 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ)
3432nnge1d 12341 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁))
3523, 33, 34leltned 11443 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1))
3635necon2bbid 2990 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3722, 36bitrd 279 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁)))
3820, 37imbi12d 344 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))))
39 con34b 316 . . . . . . . 8 ((1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))
4038, 39bitr4di 289 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4140ralbidva 3182 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿𝑥)) ≠ 0 → (𝐿𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4218, 41bitr3d 281 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
4342pm5.32da 578 . . . 4 (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
448, 43bitrd 279 . . 3 (𝑁 ∈ ℕ → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
453, 44biadanii 821 . 2 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
46 3anass 1095 . 2 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0))))
4745, 46bitr4i 278 1 (𝑋𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿𝑥)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  ontowfo 6571  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   < clt 11324  cn 12293  0cn0 12553  cz 12639   gcd cgcd 16540  Basecbs 17258   MndHom cmhm 18816  mulGrpcmgp 20161  Unitcui 20381  fldccnfld 21387  ℤRHomczrh 21533  ℤ/nczn 21536  DChrcdchr 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242  df-2idl 21283  df-cnfld 21388  df-zring 21481  df-zrh 21537  df-zn 21540  df-dchr 27295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator