Step | Hyp | Ref
| Expression |
1 | | dchrmhm.g |
. . . 4
⊢ 𝐺 = (DChr‘𝑁) |
2 | | dchrmhm.b |
. . . 4
⊢ 𝐷 = (Base‘𝐺) |
3 | 1, 2 | dchrrcl 25928 |
. . 3
⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
4 | | dchrmhm.z |
. . . . 5
⊢ 𝑍 =
(ℤ/nℤ‘𝑁) |
5 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝑍) =
(Base‘𝑍) |
6 | | eqid 2758 |
. . . . 5
⊢
(Unit‘𝑍) =
(Unit‘𝑍) |
7 | | id 22 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
8 | 1, 4, 5, 6, 7, 2 | dchrelbas2 25925 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))))) |
9 | | nnnn0 11946 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
10 | 9 | adantr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) → 𝑁 ∈
ℕ0) |
11 | | dchrelbas4.l |
. . . . . . . 8
⊢ 𝐿 = (ℤRHom‘𝑍) |
12 | 4, 5, 11 | znzrhfo 20320 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝐿:ℤ–onto→(Base‘𝑍)) |
13 | | fveq2 6662 |
. . . . . . . . . 10
⊢ ((𝐿‘𝑥) = 𝑦 → (𝑋‘(𝐿‘𝑥)) = (𝑋‘𝑦)) |
14 | 13 | neeq1d 3010 |
. . . . . . . . 9
⊢ ((𝐿‘𝑥) = 𝑦 → ((𝑋‘(𝐿‘𝑥)) ≠ 0 ↔ (𝑋‘𝑦) ≠ 0)) |
15 | | eleq1 2839 |
. . . . . . . . 9
⊢ ((𝐿‘𝑥) = 𝑦 → ((𝐿‘𝑥) ∈ (Unit‘𝑍) ↔ 𝑦 ∈ (Unit‘𝑍))) |
16 | 14, 15 | imbi12d 348 |
. . . . . . . 8
⊢ ((𝐿‘𝑥) = 𝑦 → (((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ ((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))) |
17 | 16 | cbvfo 7042 |
. . . . . . 7
⊢ (𝐿:ℤ–onto→(Base‘𝑍) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))) |
18 | 10, 12, 17 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑦 ∈ (Base‘𝑍)((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)))) |
19 | | df-ne 2952 |
. . . . . . . . . 10
⊢ ((𝑋‘(𝐿‘𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿‘𝑥)) = 0) |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑋‘(𝐿‘𝑥)) ≠ 0 ↔ ¬ (𝑋‘(𝐿‘𝑥)) = 0)) |
21 | 4, 6, 11 | znunit 20336 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ ((𝐿‘𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1)) |
22 | 10, 21 | sylan 583 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿‘𝑥) ∈ (Unit‘𝑍) ↔ (𝑥 gcd 𝑁) = 1)) |
23 | | 1red 10685 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ∈
ℝ) |
24 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
25 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℕ) |
26 | 25 | nnzd 12130 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℤ) |
27 | | nnne0 11713 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
28 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
29 | 28 | necon3ai 2976 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ≠ 0 → ¬ (𝑥 = 0 ∧ 𝑁 = 0)) |
30 | 25, 27, 29 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ¬ (𝑥 = 0 ∧ 𝑁 = 0)) |
31 | | gcdn0cl 15906 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑥 = 0 ∧ 𝑁 = 0)) → (𝑥 gcd 𝑁) ∈ ℕ) |
32 | 24, 26, 30, 31 | syl21anc 836 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℕ) |
33 | 32 | nnred 11694 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (𝑥 gcd 𝑁) ∈ ℝ) |
34 | 32 | nnge1d 11727 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → 1 ≤ (𝑥 gcd 𝑁)) |
35 | 23, 33, 34 | leltned 10836 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (1 < (𝑥 gcd 𝑁) ↔ (𝑥 gcd 𝑁) ≠ 1)) |
36 | 35 | necon2bbid 2994 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝑥 gcd 𝑁) = 1 ↔ ¬ 1 < (𝑥 gcd 𝑁))) |
37 | 22, 36 | bitrd 282 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → ((𝐿‘𝑥) ∈ (Unit‘𝑍) ↔ ¬ 1 < (𝑥 gcd 𝑁))) |
38 | 20, 37 | imbi12d 348 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ (¬ (𝑋‘(𝐿‘𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁)))) |
39 | | con34b 319 |
. . . . . . . 8
⊢ ((1 <
(𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0) ↔ (¬ (𝑋‘(𝐿‘𝑥)) = 0 → ¬ 1 < (𝑥 gcd 𝑁))) |
40 | 38, 39 | bitr4di 292 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) ∧ 𝑥 ∈ ℤ) → (((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0))) |
41 | 40 | ralbidva 3125 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) → (∀𝑥 ∈ ℤ ((𝑋‘(𝐿‘𝑥)) ≠ 0 → (𝐿‘𝑥) ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0))) |
42 | 18, 41 | bitr3d 284 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld))) → (∀𝑦 ∈ (Base‘𝑍)((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍)) ↔ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0))) |
43 | 42 | pm5.32da 582 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑦 ∈ (Base‘𝑍)((𝑋‘𝑦) ≠ 0 → 𝑦 ∈ (Unit‘𝑍))) ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0)))) |
44 | 8, 43 | bitrd 282 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0)))) |
45 | 3, 44 | biadanii 821 |
. 2
⊢ (𝑋 ∈ 𝐷 ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0)))) |
46 | | 3anass 1092 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0)) ↔ (𝑁 ∈ ℕ ∧ (𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0)))) |
47 | 45, 46 | bitr4i 281 |
1
⊢ (𝑋 ∈ 𝐷 ↔ (𝑁 ∈ ℕ ∧ 𝑋 ∈ ((mulGrp‘𝑍) MndHom
(mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ ℤ (1 < (𝑥 gcd 𝑁) → (𝑋‘(𝐿‘𝑥)) = 0))) |