MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omwordi Structured version   Visualization version   GIF version

Theorem omwordi 8570
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omwordi ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (๐ด โŠ† ๐ต โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))

Proof of Theorem omwordi
StepHypRef Expression
1 omword 8569 . . . 4 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โŠ† ๐ต โ†” (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
21biimpd 228 . . 3 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โˆง โˆ… โˆˆ ๐ถ) โ†’ (๐ด โŠ† ๐ต โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
32ex 413 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (โˆ… โˆˆ ๐ถ โ†’ (๐ด โŠ† ๐ต โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต))))
4 eloni 6374 . . . . . 6 (๐ถ โˆˆ On โ†’ Ord ๐ถ)
5 ord0eln0 6419 . . . . . . 7 (Ord ๐ถ โ†’ (โˆ… โˆˆ ๐ถ โ†” ๐ถ โ‰  โˆ…))
65necon2bbid 2984 . . . . . 6 (Ord ๐ถ โ†’ (๐ถ = โˆ… โ†” ยฌ โˆ… โˆˆ ๐ถ))
74, 6syl 17 . . . . 5 (๐ถ โˆˆ On โ†’ (๐ถ = โˆ… โ†” ยฌ โˆ… โˆˆ ๐ถ))
873ad2ant3 1135 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (๐ถ = โˆ… โ†” ยฌ โˆ… โˆˆ ๐ถ))
9 ssid 4004 . . . . . . 7 โˆ… โŠ† โˆ…
10 om0r 8538 . . . . . . . . 9 (๐ด โˆˆ On โ†’ (โˆ… ยทo ๐ด) = โˆ…)
1110adantr 481 . . . . . . . 8 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… ยทo ๐ด) = โˆ…)
12 om0r 8538 . . . . . . . . 9 (๐ต โˆˆ On โ†’ (โˆ… ยทo ๐ต) = โˆ…)
1312adantl 482 . . . . . . . 8 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… ยทo ๐ต) = โˆ…)
1411, 13sseq12d 4015 . . . . . . 7 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ ((โˆ… ยทo ๐ด) โŠ† (โˆ… ยทo ๐ต) โ†” โˆ… โŠ† โˆ…))
159, 14mpbiri 257 . . . . . 6 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… ยทo ๐ด) โŠ† (โˆ… ยทo ๐ต))
16 oveq1 7415 . . . . . . 7 (๐ถ = โˆ… โ†’ (๐ถ ยทo ๐ด) = (โˆ… ยทo ๐ด))
17 oveq1 7415 . . . . . . 7 (๐ถ = โˆ… โ†’ (๐ถ ยทo ๐ต) = (โˆ… ยทo ๐ต))
1816, 17sseq12d 4015 . . . . . 6 (๐ถ = โˆ… โ†’ ((๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต) โ†” (โˆ… ยทo ๐ด) โŠ† (โˆ… ยทo ๐ต)))
1915, 18syl5ibrcom 246 . . . . 5 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ถ = โˆ… โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
20193adant3 1132 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (๐ถ = โˆ… โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
218, 20sylbird 259 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (ยฌ โˆ… โˆˆ ๐ถ โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
2221a1dd 50 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (ยฌ โˆ… โˆˆ ๐ถ โ†’ (๐ด โŠ† ๐ต โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต))))
233, 22pm2.61d 179 1 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ถ โˆˆ On) โ†’ (๐ด โŠ† ๐ต โ†’ (๐ถ ยทo ๐ด) โŠ† (๐ถ ยทo ๐ต)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โŠ† wss 3948  โˆ…c0 4322  Ord word 6363  Oncon0 6364  (class class class)co 7408   ยทo comu 8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-oadd 8469  df-omul 8470
This theorem is referenced by:  omword1  8572  omass  8579  omeulem1  8581  oewordri  8591  oeoalem  8595  oeeui  8601  oaabs2  8647  omxpenlem  9072  cantnflt  9666  cantnflem1d  9682  omabs2  42072  naddwordnexlem0  42137  oaltom  42146
  Copyright terms: Public domain W3C validator