![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omwordi | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
Ref | Expression |
---|---|
omwordi | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omword 8576 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
3 | 2 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
4 | eloni 6374 | . . . . . 6 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
5 | ord0eln0 6419 | . . . . . . 7 ⊢ (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
6 | 5 | necon2bbid 2983 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ On → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
8 | 7 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
9 | ssid 4004 | . . . . . . 7 ⊢ ∅ ⊆ ∅ | |
10 | om0r 8545 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) | |
11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) = ∅) |
12 | om0r 8545 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
13 | 12 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐵) = ∅) |
14 | 11, 13 | sseq12d 4015 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅)) |
15 | 9, 14 | mpbiri 258 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)) |
16 | oveq1 7419 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴)) | |
17 | oveq1 7419 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
18 | 16, 17 | sseq12d 4015 | . . . . . 6 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))) |
19 | 15, 18 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
20 | 19 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
21 | 8, 20 | sylbird 260 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
22 | 21 | a1dd 50 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
23 | 3, 22 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ∅c0 4322 Ord word 6363 Oncon0 6364 (class class class)co 7412 ·o comu 8470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-oadd 8476 df-omul 8477 |
This theorem is referenced by: omword1 8579 omass 8586 omeulem1 8588 oewordri 8598 oeoalem 8602 oeeui 8608 oaabs2 8654 omxpenlem 9079 cantnflt 9673 cantnflem1d 9689 omabs2 42545 naddwordnexlem0 42610 oaltom 42619 |
Copyright terms: Public domain | W3C validator |