| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omwordi | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| omwordi | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omword 8488 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | |
| 2 | 1 | biimpd 229 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
| 4 | eloni 6317 | . . . . . 6 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 5 | ord0eln0 6363 | . . . . . . 7 ⊢ (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
| 6 | 5 | necon2bbid 2968 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ On → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 8 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 9 | ssid 3958 | . . . . . . 7 ⊢ ∅ ⊆ ∅ | |
| 10 | om0r 8457 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) = ∅) |
| 12 | om0r 8457 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
| 13 | 12 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐵) = ∅) |
| 14 | 11, 13 | sseq12d 3969 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅)) |
| 15 | 9, 14 | mpbiri 258 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)) |
| 16 | oveq1 7356 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴)) | |
| 17 | oveq1 7356 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
| 18 | 16, 17 | sseq12d 3969 | . . . . . 6 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))) |
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 20 | 19 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 21 | 8, 20 | sylbird 260 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 22 | 21 | a1dd 50 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
| 23 | 3, 22 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∅c0 4284 Ord word 6306 Oncon0 6307 (class class class)co 7349 ·o comu 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-oadd 8392 df-omul 8393 |
| This theorem is referenced by: omword1 8491 omass 8498 omeulem1 8500 oewordri 8510 oeoalem 8514 oeeui 8520 oaabs2 8567 omxpenlem 8995 cantnflt 9568 cantnflem1d 9584 omabs2 43309 naddwordnexlem0 43373 oaltom 43382 |
| Copyright terms: Public domain | W3C validator |