| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omwordi | Structured version Visualization version GIF version | ||
| Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| omwordi | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omword 8587 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | |
| 2 | 1 | biimpd 229 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 3 | 2 | ex 412 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
| 4 | eloni 6367 | . . . . . 6 ⊢ (𝐶 ∈ On → Ord 𝐶) | |
| 5 | ord0eln0 6413 | . . . . . . 7 ⊢ (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
| 6 | 5 | necon2bbid 2976 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ On → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 8 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
| 9 | ssid 3986 | . . . . . . 7 ⊢ ∅ ⊆ ∅ | |
| 10 | om0r 8556 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (∅ ·o 𝐴) = ∅) | |
| 11 | 10 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) = ∅) |
| 12 | om0r 8556 | . . . . . . . . 9 ⊢ (𝐵 ∈ On → (∅ ·o 𝐵) = ∅) | |
| 13 | 12 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐵) = ∅) |
| 14 | 11, 13 | sseq12d 3997 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅)) |
| 15 | 9, 14 | mpbiri 258 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)) |
| 16 | oveq1 7417 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴)) | |
| 17 | oveq1 7417 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
| 18 | 16, 17 | sseq12d 3997 | . . . . . 6 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))) |
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 20 | 19 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 21 | 8, 20 | sylbird 260 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| 22 | 21 | a1dd 50 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
| 23 | 3, 22 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 Ord word 6356 Oncon0 6357 (class class class)co 7410 ·o comu 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-oadd 8489 df-omul 8490 |
| This theorem is referenced by: omword1 8590 omass 8597 omeulem1 8599 oewordri 8609 oeoalem 8613 oeeui 8619 oaabs2 8666 omxpenlem 9092 cantnflt 9691 cantnflem1d 9707 omabs2 43323 naddwordnexlem0 43387 oaltom 43396 |
| Copyright terms: Public domain | W3C validator |