MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Visualization version   GIF version

Theorem ftalem5 25013
Description: Lemma for fta 25016: Main proof. We have already shifted the minimum found in ftalem3 25011 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem5 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛,𝑥   𝑘,𝐹,𝑛,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑥   𝑥,𝑈   𝑘,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)   𝐾(𝑥)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . . . . 6 𝑁 = (deg‘𝐹)
3 ftalem.3 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
6 ftalem4.6 . . . . . 6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
7 ftalem4.7 . . . . . 6 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
8 ftalem4.8 . . . . . 6 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
9 ftalem4.9 . . . . . 6 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 25012 . . . . 5 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
1110simprd 485 . . . 4 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
1211simp1d 1165 . . 3 (𝜑𝑇 ∈ ℂ)
1311simp3d 1167 . . . . 5 (𝜑𝑋 ∈ ℝ+)
1413rpred 12082 . . . 4 (𝜑𝑋 ∈ ℝ)
1514recnd 10349 . . 3 (𝜑𝑋 ∈ ℂ)
1612, 15mulcld 10341 . 2 (𝜑 → (𝑇 · 𝑋) ∈ ℂ)
17 plyf 24164 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
183, 17syl 17 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1918, 16ffvelrnd 6578 . . . 4 (𝜑 → (𝐹‘(𝑇 · 𝑋)) ∈ ℂ)
2019abscld 14394 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ∈ ℝ)
21 0cn 10313 . . . . . . 7 0 ∈ ℂ
22 ffvelrn 6575 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
2318, 21, 22sylancl 576 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℂ)
2423abscld 14394 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
2510simpld 484 . . . . . . . . 9 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2625simpld 484 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
2726nnnn0d 11613 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2814, 27reexpcld 13244 . . . . . 6 (𝜑 → (𝑋𝐾) ∈ ℝ)
2924, 28remulcld 10351 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) · (𝑋𝐾)) ∈ ℝ)
3024, 29resubcld 10739 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) ∈ ℝ)
31 fzfid 12992 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
32 peano2nn0 11595 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3327, 32syl 17 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℕ0)
34 elfzuz 12557 . . . . . . . . 9 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
35 eluznn0 11972 . . . . . . . . 9 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
3633, 34, 35syl2an 585 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
371coef3 24198 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
383, 37syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
39 ffvelrn 6575 . . . . . . . . 9 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4038, 39sylan 571 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4136, 40syldan 581 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
4216adantr 468 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇 · 𝑋) ∈ ℂ)
4342, 36expcld 13227 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
4441, 43mulcld 10341 . . . . . 6 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4531, 44fsumcl 14683 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4645abscld 14394 . . . 4 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
4730, 46readdcld 10350 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ∈ ℝ)
48 fzfid 12992 . . . . . 6 (𝜑 → (0...𝐾) ∈ Fin)
49 elfznn0 12652 . . . . . . . 8 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
5038, 49, 39syl2an 585 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → (𝐴𝑘) ∈ ℂ)
51 expcl 13097 . . . . . . . 8 (((𝑇 · 𝑋) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5216, 49, 51syl2an 585 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5350, 52mulcld 10341 . . . . . 6 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5448, 53fsumcl 14683 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5554, 45abstrid 14414 . . . 4 (𝜑 → (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ≤ ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
561, 2coeid2 24205 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑇 · 𝑋) ∈ ℂ) → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
573, 16, 56syl2anc 575 . . . . . 6 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
5826nnred 11316 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5958ltp1d 11235 . . . . . . . 8 (𝜑𝐾 < (𝐾 + 1))
60 fzdisj 12587 . . . . . . . 8 (𝐾 < (𝐾 + 1) → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
6159, 60syl 17 . . . . . . 7 (𝜑 → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
62 ssrab2 3884 . . . . . . . . . . . 12 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
63 nnuz 11937 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6462, 63sseqtri 3834 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
654nnne0d 11347 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
662, 1dgreq0 24231 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
673, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
68 fveq2 6404 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
69 dgr0 24228 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
7068, 69syl6eq 2856 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
712, 70syl5eq 2852 . . . . . . . . . . . . . . 15 (𝐹 = 0𝑝𝑁 = 0)
7267, 71syl6bir 245 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
7372necon3d 2999 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
7465, 73mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ≠ 0)
75 fveq2 6404 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
7675neeq1d 3037 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
7776elrab 3559 . . . . . . . . . . . 12 (𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝑁 ∈ ℕ ∧ (𝐴𝑁) ≠ 0))
784, 74, 77sylanbrc 574 . . . . . . . . . . 11 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
79 infssuzle 11986 . . . . . . . . . . 11 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
8064, 78, 79sylancr 577 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
816, 80syl5eqbr 4879 . . . . . . . . 9 (𝜑𝐾𝑁)
82 nn0uz 11936 . . . . . . . . . . 11 0 = (ℤ‘0)
8327, 82syl6eleq 2895 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ‘0))
844nnzd 11743 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
85 elfz5 12553 . . . . . . . . . 10 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8683, 84, 85syl2anc 575 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8781, 86mpbird 248 . . . . . . . 8 (𝜑𝐾 ∈ (0...𝑁))
88 fzsplit 12586 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
8987, 88syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
90 fzfid 12992 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
91 elfznn0 12652 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9238, 91, 39syl2an 585 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9316, 91, 51syl2an 585 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
9492, 93mulcld 10341 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
9561, 89, 90, 94fsumsplit 14690 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9657, 95eqtrd 2840 . . . . 5 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9796fveq2d 6408 . . . 4 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) = (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
981coefv0 24214 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
993, 98syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) = (𝐴‘0))
10099eqcomd 2812 . . . . . . . . . . 11 (𝜑 → (𝐴‘0) = (𝐹‘0))
10116exp0d 13221 . . . . . . . . . . 11 (𝜑 → ((𝑇 · 𝑋)↑0) = 1)
102100, 101oveq12d 6888 . . . . . . . . . 10 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = ((𝐹‘0) · 1))
10323mulid1d 10338 . . . . . . . . . 10 (𝜑 → ((𝐹‘0) · 1) = (𝐹‘0))
104102, 103eqtrd 2840 . . . . . . . . 9 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = (𝐹‘0))
105 1e0p1 11797 . . . . . . . . . . . . 13 1 = (0 + 1)
106105oveq1i 6880 . . . . . . . . . . . 12 (1...𝐾) = ((0 + 1)...𝐾)
107106sumeq1i 14647 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))
10826, 63syl6eleq 2895 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘1))
109 elfznn 12589 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ)
110109nnnn0d 11613 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ0)
11138, 110, 39syl2an 585 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → (𝐴𝑘) ∈ ℂ)
11216, 110, 51syl2an 585 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
113111, 112mulcld 10341 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
114 fveq2 6404 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
115 oveq2 6878 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑𝐾))
116114, 115oveq12d 6888 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)))
117108, 113, 116fsumm1 14699 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
118107, 117syl5eqr 2854 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
119 elfznn 12589 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ)
120119adantl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℕ)
121120nnred 11316 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℝ)
12258adantr 468 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
123 peano2rem 10629 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
124122, 123syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
125 elfzle2 12564 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
126125adantl 469 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
127122ltm1d 11237 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) < 𝐾)
128121, 124, 122, 126, 127lelttrd 10476 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 < 𝐾)
129121, 122ltnled 10465 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 < 𝐾 ↔ ¬ 𝐾𝑘))
130128, 129mpbid 223 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝐾𝑘)
131 infssuzle 11986 . . . . . . . . . . . . . . . . . . 19 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑘)
1326, 131syl5eqbr 4879 . . . . . . . . . . . . . . . . . 18 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → 𝐾𝑘)
13364, 132mpan 673 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → 𝐾𝑘)
134130, 133nsyl 137 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
135 fveq2 6404 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
136135neeq1d 3037 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
137136elrab3 3560 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
138120, 137syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
139138necon2bbid 3021 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) = 0 ↔ ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}))
140134, 139mpbird 248 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐴𝑘) = 0)
141140oveq1d 6885 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (0 · ((𝑇 · 𝑋)↑𝑘)))
142119nnnn0d 11613 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
14316, 142, 51syl2an 585 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
144143mul02d 10515 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (0 · ((𝑇 · 𝑋)↑𝑘)) = 0)
145141, 144eqtrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
146145sumeq2dv 14652 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ (1...(𝐾 − 1))0)
147 fzfi 12991 . . . . . . . . . . . . . 14 (1...(𝐾 − 1)) ∈ Fin
148147olci 884 . . . . . . . . . . . . 13 ((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin)
149 sumz 14672 . . . . . . . . . . . . 13 (((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin) → Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0)
150148, 149ax-mp 5 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0
151146, 150syl6eq 2856 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
15212, 15, 27mulexpd 13242 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝑋)↑𝐾) = ((𝑇𝐾) · (𝑋𝐾)))
153152oveq2d 6886 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
15438, 27ffvelrnd 6578 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐾) ∈ ℂ)
15512, 27expcld 13227 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝐾) ∈ ℂ)
15628recnd 10349 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝐾) ∈ ℂ)
157154, 155, 156mulassd 10344 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
158153, 157eqtr4d 2843 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)))
1597oveq1i 6880 . . . . . . . . . . . . . . . 16 (𝑇𝐾) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾)
16058recnd 10349 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℂ)
16126nnne0d 11347 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≠ 0)
162160, 161recid2d 11078 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 / 𝐾) · 𝐾) = 1)
163162oveq2d 6886 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = (-((𝐹‘0) / (𝐴𝐾))↑𝑐1))
16425simprd 485 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴𝐾) ≠ 0)
16523, 154, 164divcld 11082 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
166165negcld 10660 . . . . . . . . . . . . . . . . . 18 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
16726nnrecred 11348 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 𝐾) ∈ ℝ)
168167recnd 10349 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 / 𝐾) ∈ ℂ)
169166, 168, 27cxpmul2d 24665 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾))
170166cxp1d 24662 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐1) = -((𝐹‘0) / (𝐴𝐾)))
171163, 169, 1703eqtr3d 2848 . . . . . . . . . . . . . . . 16 (𝜑 → ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾) = -((𝐹‘0) / (𝐴𝐾)))
172159, 171syl5eq 2852 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝐾) = -((𝐹‘0) / (𝐴𝐾)))
173172oveq2d 6886 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))))
174154, 165mulneg2d 10765 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))) = -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))))
17523, 154, 164divcan2d 11084 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = (𝐹‘0))
176175negeqd 10556 . . . . . . . . . . . . . 14 (𝜑 → -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = -(𝐹‘0))
177173, 174, 1763eqtrd 2844 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = -(𝐹‘0))
178177oveq1d 6885 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = (-(𝐹‘0) · (𝑋𝐾)))
17923, 156mulneg1d 10764 . . . . . . . . . . . 12 (𝜑 → (-(𝐹‘0) · (𝑋𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
180158, 178, 1793eqtrd 2844 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
181151, 180oveq12d 6888 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))) = (0 + -((𝐹‘0) · (𝑋𝐾))))
18223, 156mulcld 10341 . . . . . . . . . . . 12 (𝜑 → ((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
183182negcld 10660 . . . . . . . . . . 11 (𝜑 → -((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
184183addid2d 10518 . . . . . . . . . 10 (𝜑 → (0 + -((𝐹‘0) · (𝑋𝐾))) = -((𝐹‘0) · (𝑋𝐾)))
185118, 181, 1843eqtrd 2844 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = -((𝐹‘0) · (𝑋𝐾)))
186104, 185oveq12d 6888 . . . . . . . 8 (𝜑 → (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
187 fveq2 6404 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
188 oveq2 6878 . . . . . . . . . 10 (𝑘 = 0 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑0))
189187, 188oveq12d 6888 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴‘0) · ((𝑇 · 𝑋)↑0)))
19083, 53, 189fsum1p 14701 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
191103oveq1d 6885 . . . . . . . . 9 (𝜑 → (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
192 1cnd 10316 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
19323, 192, 156subdid 10767 . . . . . . . . 9 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))))
19423, 182negsubd 10679 . . . . . . . . 9 (𝜑 → ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
195191, 193, 1943eqtr4d 2850 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
196186, 190, 1953eqtr4d 2850 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐹‘0) · (1 − (𝑋𝐾))))
197196fveq2d 6408 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))))
198 1re 10321 . . . . . . . . 9 1 ∈ ℝ
199 resubcl 10626 . . . . . . . . 9 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (1 − (𝑋𝐾)) ∈ ℝ)
200198, 28, 199sylancr 577 . . . . . . . 8 (𝜑 → (1 − (𝑋𝐾)) ∈ ℝ)
201200recnd 10349 . . . . . . 7 (𝜑 → (1 − (𝑋𝐾)) ∈ ℂ)
20223, 201absmuld 14412 . . . . . 6 (𝜑 → (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))))
20313rpge0d 12086 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑋)
20411simp2d 1166 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ+)
205204rpred 12082 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
206 min1 12234 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
207198, 205, 206sylancr 577 . . . . . . . . . . . 12 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
2089, 207syl5eqbr 4879 . . . . . . . . . . 11 (𝜑𝑋 ≤ 1)
209 exple1 13139 . . . . . . . . . . 11 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ∧ 𝐾 ∈ ℕ0) → (𝑋𝐾) ≤ 1)
21014, 203, 208, 27, 209syl31anc 1485 . . . . . . . . . 10 (𝜑 → (𝑋𝐾) ≤ 1)
211 subge0 10822 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
212198, 28, 211sylancr 577 . . . . . . . . . 10 (𝜑 → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
213210, 212mpbird 248 . . . . . . . . 9 (𝜑 → 0 ≤ (1 − (𝑋𝐾)))
214200, 213absidd 14380 . . . . . . . 8 (𝜑 → (abs‘(1 − (𝑋𝐾))) = (1 − (𝑋𝐾)))
215214oveq2d 6886 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))))
21624recnd 10349 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘0)) ∈ ℂ)
217216, 192, 156subdid 10767 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))) = (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
218216mulid1d 10338 . . . . . . . 8 (𝜑 → ((abs‘(𝐹‘0)) · 1) = (abs‘(𝐹‘0)))
219218oveq1d 6885 . . . . . . 7 (𝜑 → (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
220215, 217, 2193eqtrd 2844 . . . . . 6 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
221197, 202, 2203eqtrrd 2845 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
222221oveq1d 6885 . . . 4 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) = ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22355, 97, 2223brtr4d 4876 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ≤ (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22444abscld 14394 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22531, 224fsumrecl 14684 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22631, 44fsumabs 14751 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
227 expcl 13097 . . . . . . . . . . . . 13 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22812, 227sylan 571 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22936, 228syldan 581 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
23041, 229mulcld 10341 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
231230abscld 14394 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23231, 231fsumrecl 14684 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23314, 33reexpcld 13244 . . . . . . . 8 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℝ)
234232, 233remulcld 10351 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
235233adantr 468 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋↑(𝐾 + 1)) ∈ ℝ)
236231, 235remulcld 10351 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
23712adantr 468 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑇 ∈ ℂ)
23815adantr 468 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℂ)
239237, 238, 36mulexpd 13242 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) = ((𝑇𝑘) · (𝑋𝑘)))
240239oveq2d 6886 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
24114adantr 468 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℝ)
242241, 36reexpcld 13244 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ)
243242recnd 10349 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℂ)
24441, 229, 243mulassd 10344 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
245240, 244eqtr4d 2843 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)))
246245fveq2d 6408 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))))
247230, 243absmuld 14412 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))))
248 elfzelz 12561 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ ℤ)
249 rpexpcl 13098 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ+𝑘 ∈ ℤ) → (𝑋𝑘) ∈ ℝ+)
25013, 248, 249syl2an 585 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ+)
251250rpge0d 12086 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝑋𝑘))
252242, 251absidd 14380 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(𝑋𝑘)) = (𝑋𝑘))
253252oveq2d 6886 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
254246, 247, 2533eqtrd 2844 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
255230absge0d 14402 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
25633adantr 468 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐾 + 1) ∈ ℕ0)
25734adantl 469 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
258203adantr 468 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ 𝑋)
259208adantr 468 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ≤ 1)
260241, 256, 257, 258, 259leexp2rd 13261 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ≤ (𝑋↑(𝐾 + 1)))
261242, 235, 231, 255, 260lemul2ad 11245 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
262254, 261eqbrtrd 4866 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26331, 224, 236, 262fsumle 14749 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
264233recnd 10349 . . . . . . . . 9 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℂ)
265231recnd 10349 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
26631, 264, 265fsummulc1 14735 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
267263, 266breqtrrd 4872 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26815, 27expp1d 13228 . . . . . . . . . . 11 (𝜑 → (𝑋↑(𝐾 + 1)) = ((𝑋𝐾) · 𝑋))
269156, 15mulcomd 10342 . . . . . . . . . . 11 (𝜑 → ((𝑋𝐾) · 𝑋) = (𝑋 · (𝑋𝐾)))
270268, 269eqtrd 2840 . . . . . . . . . 10 (𝜑 → (𝑋↑(𝐾 + 1)) = (𝑋 · (𝑋𝐾)))
271270oveq2d 6886 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
272232recnd 10349 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
273272, 15, 156mulassd 10344 . . . . . . . . 9 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
274271, 273eqtr4d 2843 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)))
275232, 14remulcld 10351 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) ∈ ℝ)
276 nnssz 11659 . . . . . . . . . . . 12 ℕ ⊆ ℤ
27762, 276sstri 3807 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℤ
27878ne0d 4123 . . . . . . . . . . . . 13 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
279 infssuzcl 11987 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
28064, 278, 279sylancr 577 . . . . . . . . . . . 12 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2816, 280syl5eqel 2889 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
282277, 281sseldi 3796 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
28313, 282rpexpcld 13251 . . . . . . . . 9 (𝜑 → (𝑋𝐾) ∈ ℝ+)
284 peano2re 10490 . . . . . . . . . . . 12 𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
285232, 284syl 17 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
286285, 14remulcld 10351 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ∈ ℝ)
287232ltp1d 11235 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
288232, 285, 13, 287ltmul1dd 12137 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋))
289 min2 12235 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
290198, 205, 289sylancr 577 . . . . . . . . . . . . 13 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
2919, 290syl5eqbr 4879 . . . . . . . . . . . 12 (𝜑𝑋𝑈)
292291, 8syl6breq 4885 . . . . . . . . . . 11 (𝜑𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)))
293 0red 10324 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
29431, 231, 255fsumge0 14745 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
295293, 232, 285, 294, 287lelttrd 10476 . . . . . . . . . . . 12 (𝜑 → 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
296 lemuldiv2 11185 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ ∧ 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))) → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
29714, 24, 285, 295, 296syl112anc 1486 . . . . . . . . . . 11 (𝜑 → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
298292, 297mpbird 248 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)))
299275, 286, 24, 288, 298ltletrd 10478 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < (abs‘(𝐹‘0)))
300275, 24, 283, 299ltmul1dd 12137 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
301274, 300eqbrtrd 4866 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
302225, 234, 29, 267, 301lelttrd 10476 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30346, 225, 29, 226, 302lelttrd 10476 . . . . 5 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30446, 29, 24, 303ltsub2dd 10921 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
30530, 46, 24ltaddsubd 10908 . . . 4 (𝜑 → ((((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)) ↔ ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))))
306304, 305mpbird 248 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)))
30720, 47, 24, 223, 306lelttrd 10476 . 2 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0)))
308 2fveq3 6409 . . . 4 (𝑥 = (𝑇 · 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑇 · 𝑋))))
309308breq1d 4854 . . 3 (𝑥 = (𝑇 · 𝑋) → ((abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)) ↔ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))))
310309rspcev 3502 . 2 (((𝑇 · 𝑋) ∈ ℂ ∧ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))) → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
31116, 307, 310syl2anc 575 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097  {crab 3100  cun 3767  cin 3768  wss 3769  c0 4116  ifcif 4279   class class class wbr 4844  wf 6093  cfv 6097  (class class class)co 6870  Fincfn 8188  infcinf 8582  cc 10215  cr 10216  0cc0 10217  1c1 10218   + caddc 10220   · cmul 10222   < clt 10355  cle 10356  cmin 10547  -cneg 10548   / cdiv 10965  cn 11301  0cn0 11555  cz 11639  cuz 11900  +crp 12042  ...cfz 12545  cexp 13079  abscabs 14193  Σcsu 14635  0𝑝c0p 23646  Polycply 24150  coeffccoe 24152  degcdgr 24153  𝑐ccxp 24512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-inf2 8781  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295  ax-addf 10296  ax-mulf 10297
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-of 7123  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-2o 7793  df-oadd 7796  df-er 7975  df-map 8090  df-pm 8091  df-ixp 8142  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-fi 8552  df-sup 8583  df-inf 8584  df-oi 8650  df-card 9044  df-cda 9271  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-mod 12889  df-seq 13021  df-exp 13080  df-fac 13277  df-bc 13306  df-hash 13334  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15014  df-sin 15016  df-cos 15017  df-pi 15019  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17947  df-cmn 18392  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-fg 19948  df-cnfld 19951  df-top 20908  df-topon 20925  df-topsp 20947  df-bases 20960  df-cld 21033  df-ntr 21034  df-cls 21035  df-nei 21112  df-lp 21150  df-perf 21151  df-cn 21241  df-cnp 21242  df-haus 21329  df-tx 21575  df-hmeo 21768  df-fil 21859  df-fm 21951  df-flim 21952  df-flf 21953  df-xms 22334  df-ms 22335  df-tms 22336  df-cncf 22890  df-0p 23647  df-limc 23840  df-dv 23841  df-ply 24154  df-coe 24156  df-dgr 24157  df-log 24513  df-cxp 24514
This theorem is referenced by:  ftalem6  25014
  Copyright terms: Public domain W3C validator