MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftalem5 Structured version   Visualization version   GIF version

Theorem ftalem5 27009
Description: Lemma for fta 27012: Main proof. We have already shifted the minimum found in ftalem3 27007 to zero by a change of variables, and now we show that the minimum value is zero. Expanding in a series about the minimum value, let 𝐾 be the lowest term in the polynomial that is nonzero, and let 𝑇 be a 𝐾-th root of -𝐹(0) / 𝐴(𝐾). Then an evaluation of 𝐹(𝑇𝑋) where 𝑋 is a sufficiently small positive number yields 𝐹(0) for the first term and -𝐹(0) · 𝑋𝐾 for the 𝐾-th term, and all higher terms are bounded because 𝑋 is small. Thus, abs(𝐹(𝑇𝑋)) ≤ abs(𝐹(0))(1 − 𝑋𝐾) < abs(𝐹(0)), in contradiction to our choice of 𝐹(0) as the minimum. (Contributed by Mario Carneiro, 14-Sep-2014.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ftalem.1 𝐴 = (coeff‘𝐹)
ftalem.2 𝑁 = (deg‘𝐹)
ftalem.3 (𝜑𝐹 ∈ (Poly‘𝑆))
ftalem.4 (𝜑𝑁 ∈ ℕ)
ftalem4.5 (𝜑 → (𝐹‘0) ≠ 0)
ftalem4.6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
ftalem4.7 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
ftalem4.8 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
ftalem4.9 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
Assertion
Ref Expression
ftalem5 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝐴   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛,𝑥   𝑘,𝐹,𝑛,𝑥   𝜑,𝑘,𝑥   𝑆,𝑘   𝑇,𝑘,𝑥   𝑥,𝑈   𝑘,𝑋,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑛)   𝑆(𝑥,𝑛)   𝑇(𝑛)   𝑈(𝑘,𝑛)   𝐾(𝑥)

Proof of Theorem ftalem5
StepHypRef Expression
1 ftalem.1 . . . . . 6 𝐴 = (coeff‘𝐹)
2 ftalem.2 . . . . . 6 𝑁 = (deg‘𝐹)
3 ftalem.3 . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
4 ftalem.4 . . . . . 6 (𝜑𝑁 ∈ ℕ)
5 ftalem4.5 . . . . . 6 (𝜑 → (𝐹‘0) ≠ 0)
6 ftalem4.6 . . . . . 6 𝐾 = inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < )
7 ftalem4.7 . . . . . 6 𝑇 = (-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))
8 ftalem4.8 . . . . . 6 𝑈 = ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
9 ftalem4.9 . . . . . 6 𝑋 = if(1 ≤ 𝑈, 1, 𝑈)
101, 2, 3, 4, 5, 6, 7, 8, 9ftalem4 27008 . . . . 5 (𝜑 → ((𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0) ∧ (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+)))
1110simprd 495 . . . 4 (𝜑 → (𝑇 ∈ ℂ ∧ 𝑈 ∈ ℝ+𝑋 ∈ ℝ+))
1211simp1d 1142 . . 3 (𝜑𝑇 ∈ ℂ)
1311simp3d 1144 . . . . 5 (𝜑𝑋 ∈ ℝ+)
1413rpred 12929 . . . 4 (𝜑𝑋 ∈ ℝ)
1514recnd 11135 . . 3 (𝜑𝑋 ∈ ℂ)
1612, 15mulcld 11127 . 2 (𝜑 → (𝑇 · 𝑋) ∈ ℂ)
17 plyf 26125 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
183, 17syl 17 . . . . 5 (𝜑𝐹:ℂ⟶ℂ)
1918, 16ffvelcdmd 7013 . . . 4 (𝜑 → (𝐹‘(𝑇 · 𝑋)) ∈ ℂ)
2019abscld 15341 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ∈ ℝ)
21 0cn 11099 . . . . . . 7 0 ∈ ℂ
22 ffvelcdm 7009 . . . . . . 7 ((𝐹:ℂ⟶ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) ∈ ℂ)
2318, 21, 22sylancl 586 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℂ)
2423abscld 15341 . . . . 5 (𝜑 → (abs‘(𝐹‘0)) ∈ ℝ)
2510simpld 494 . . . . . . . . 9 (𝜑 → (𝐾 ∈ ℕ ∧ (𝐴𝐾) ≠ 0))
2625simpld 494 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
2726nnnn0d 12437 . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
2814, 27reexpcld 14065 . . . . . 6 (𝜑 → (𝑋𝐾) ∈ ℝ)
2924, 28remulcld 11137 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) · (𝑋𝐾)) ∈ ℝ)
3024, 29resubcld 11540 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) ∈ ℝ)
31 fzfid 13875 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ∈ Fin)
321coef3 26159 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
333, 32syl 17 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
34 peano2nn0 12416 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ0)
3527, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐾 + 1) ∈ ℕ0)
36 elfzuz 13415 . . . . . . . . 9 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
37 eluznn0 12810 . . . . . . . . 9 (((𝐾 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝐾 + 1))) → 𝑘 ∈ ℕ0)
3835, 36, 37syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ ℕ0)
39 ffvelcdm 7009 . . . . . . . 8 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
4033, 38, 39syl2an2r 685 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐴𝑘) ∈ ℂ)
4116adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇 · 𝑋) ∈ ℂ)
4241, 38expcld 14048 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
4340, 42mulcld 11127 . . . . . 6 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4431, 43fsumcl 15635 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
4544abscld 15341 . . . 4 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
4630, 45readdcld 11136 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ∈ ℝ)
47 fzfid 13875 . . . . . 6 (𝜑 → (0...𝐾) ∈ Fin)
48 elfznn0 13515 . . . . . . . 8 (𝑘 ∈ (0...𝐾) → 𝑘 ∈ ℕ0)
4933, 48, 39syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → (𝐴𝑘) ∈ ℂ)
50 expcl 13981 . . . . . . . 8 (((𝑇 · 𝑋) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5116, 48, 50syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
5249, 51mulcld 11127 . . . . . 6 ((𝜑𝑘 ∈ (0...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5347, 52fsumcl 15635 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
5453, 44abstrid 15361 . . . 4 (𝜑 → (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) ≤ ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
551, 2coeid2 26166 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑇 · 𝑋) ∈ ℂ) → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
563, 16, 55syl2anc 584 . . . . . 6 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))
5726nnred 12135 . . . . . . . . 9 (𝜑𝐾 ∈ ℝ)
5857ltp1d 12047 . . . . . . . 8 (𝜑𝐾 < (𝐾 + 1))
59 fzdisj 13446 . . . . . . . 8 (𝐾 < (𝐾 + 1) → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
6058, 59syl 17 . . . . . . 7 (𝜑 → ((0...𝐾) ∩ ((𝐾 + 1)...𝑁)) = ∅)
61 ssrab2 4025 . . . . . . . . . . . 12 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℕ
62 nnuz 12770 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
6361, 62sseqtri 3978 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1)
64 fveq2 6817 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝐴𝑛) = (𝐴𝑁))
6564neeq1d 2987 . . . . . . . . . . . 12 (𝑛 = 𝑁 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑁) ≠ 0))
664nnne0d 12170 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
672, 1dgreq0 26193 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
683, 67syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
69 fveq2 6817 . . . . . . . . . . . . . . . . 17 (𝐹 = 0𝑝 → (deg‘𝐹) = (deg‘0𝑝))
70 dgr0 26190 . . . . . . . . . . . . . . . . 17 (deg‘0𝑝) = 0
7169, 70eqtrdi 2782 . . . . . . . . . . . . . . . 16 (𝐹 = 0𝑝 → (deg‘𝐹) = 0)
722, 71eqtrid 2778 . . . . . . . . . . . . . . 15 (𝐹 = 0𝑝𝑁 = 0)
7368, 72biimtrrdi 254 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝑁) = 0 → 𝑁 = 0))
7473necon3d 2949 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ≠ 0 → (𝐴𝑁) ≠ 0))
7566, 74mpd 15 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑁) ≠ 0)
7665, 4, 75elrabd 3644 . . . . . . . . . . 11 (𝜑𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
77 infssuzle 12824 . . . . . . . . . . 11 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
7863, 76, 77sylancr 587 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑁)
796, 78eqbrtrid 5121 . . . . . . . . 9 (𝜑𝐾𝑁)
80 nn0uz 12769 . . . . . . . . . . 11 0 = (ℤ‘0)
8127, 80eleqtrdi 2841 . . . . . . . . . 10 (𝜑𝐾 ∈ (ℤ‘0))
824nnzd 12490 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
83 elfz5 13411 . . . . . . . . . 10 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8481, 82, 83syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
8579, 84mpbird 257 . . . . . . . 8 (𝜑𝐾 ∈ (0...𝑁))
86 fzsplit 13445 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
8785, 86syl 17 . . . . . . 7 (𝜑 → (0...𝑁) = ((0...𝐾) ∪ ((𝐾 + 1)...𝑁)))
88 fzfid 13875 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
89 elfznn0 13515 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9033, 89, 39syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
9116, 89, 50syl2an 596 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
9290, 91mulcld 11127 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
9360, 87, 88, 92fsumsplit 15643 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9456, 93eqtrd 2766 . . . . 5 (𝜑 → (𝐹‘(𝑇 · 𝑋)) = (Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
9594fveq2d 6821 . . . 4 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) = (abs‘(Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
961coefv0 26175 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘𝑆) → (𝐹‘0) = (𝐴‘0))
973, 96syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹‘0) = (𝐴‘0))
9897eqcomd 2737 . . . . . . . . . . 11 (𝜑 → (𝐴‘0) = (𝐹‘0))
9916exp0d 14042 . . . . . . . . . . 11 (𝜑 → ((𝑇 · 𝑋)↑0) = 1)
10098, 99oveq12d 7359 . . . . . . . . . 10 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = ((𝐹‘0) · 1))
10123mulridd 11124 . . . . . . . . . 10 (𝜑 → ((𝐹‘0) · 1) = (𝐹‘0))
102100, 101eqtrd 2766 . . . . . . . . 9 (𝜑 → ((𝐴‘0) · ((𝑇 · 𝑋)↑0)) = (𝐹‘0))
103 1e0p1 12625 . . . . . . . . . . . . 13 1 = (0 + 1)
104103oveq1i 7351 . . . . . . . . . . . 12 (1...𝐾) = ((0 + 1)...𝐾)
105104sumeq1i 15599 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))
10626, 62eleqtrdi 2841 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (ℤ‘1))
107 elfznn 13448 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ)
108107nnnn0d 12437 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐾) → 𝑘 ∈ ℕ0)
10933, 108, 39syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → (𝐴𝑘) ∈ ℂ)
11016, 108, 50syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
111109, 110mulcld 11127 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝐾)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) ∈ ℂ)
112 fveq2 6817 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (𝐴𝑘) = (𝐴𝐾))
113 oveq2 7349 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑𝐾))
114112, 113oveq12d 7359 . . . . . . . . . . . 12 (𝑘 = 𝐾 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)))
115106, 111, 114fsumm1 15653 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
116105, 115eqtr3id 2780 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))))
117 elfznn 13448 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ)
118117adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℕ)
119118nnred 12135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ∈ ℝ)
12057adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝐾 ∈ ℝ)
121 peano2rem 11423 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
122120, 121syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
123 elfzle2 13423 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
124123adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
125120ltm1d 12049 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐾 − 1) < 𝐾)
126119, 122, 120, 124, 125lelttrd 11266 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → 𝑘 < 𝐾)
127119, 120ltnled 11255 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 < 𝐾 ↔ ¬ 𝐾𝑘))
128126, 127mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝐾𝑘)
129 infssuzle 12824 . . . . . . . . . . . . . . . . . . 19 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ≤ 𝑘)
1306, 129eqbrtrid 5121 . . . . . . . . . . . . . . . . . 18 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}) → 𝐾𝑘)
13163, 130mpan 690 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} → 𝐾𝑘)
132128, 131nsyl 140 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
133 fveq2 6817 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
134133neeq1d 2987 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → ((𝐴𝑛) ≠ 0 ↔ (𝐴𝑘) ≠ 0))
135134elrab3 3643 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
136118, 135syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ↔ (𝐴𝑘) ≠ 0))
137136necon2bbid 2971 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) = 0 ↔ ¬ 𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}))
138132, 137mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (𝐴𝑘) = 0)
139138oveq1d 7356 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (0 · ((𝑇 · 𝑋)↑𝑘)))
140117nnnn0d 12437 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
14116, 140, 50syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝑇 · 𝑋)↑𝑘) ∈ ℂ)
142141mul02d 11306 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → (0 · ((𝑇 · 𝑋)↑𝑘)) = 0)
143139, 142eqtrd 2766 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝐾 − 1))) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
144143sumeq2dv 15604 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = Σ𝑘 ∈ (1...(𝐾 − 1))0)
145 fzfi 13874 . . . . . . . . . . . . . 14 (1...(𝐾 − 1)) ∈ Fin
146145olci 866 . . . . . . . . . . . . 13 ((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin)
147 sumz 15624 . . . . . . . . . . . . 13 (((1...(𝐾 − 1)) ⊆ (ℤ‘1) ∨ (1...(𝐾 − 1)) ∈ Fin) → Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0)
148146, 147ax-mp 5 . . . . . . . . . . . 12 Σ𝑘 ∈ (1...(𝐾 − 1))0 = 0
149144, 148eqtrdi 2782 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = 0)
15012, 15, 27mulexpd 14063 . . . . . . . . . . . . . 14 (𝜑 → ((𝑇 · 𝑋)↑𝐾) = ((𝑇𝐾) · (𝑋𝐾)))
151150oveq2d 7357 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
15233, 27ffvelcdmd 7013 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐾) ∈ ℂ)
15312, 27expcld 14048 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝐾) ∈ ℂ)
15428recnd 11135 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝐾) ∈ ℂ)
155152, 153, 154mulassd 11130 . . . . . . . . . . . . 13 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = ((𝐴𝐾) · ((𝑇𝐾) · (𝑋𝐾))))
156151, 155eqtr4d 2769 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)))
1577oveq1i 7351 . . . . . . . . . . . . . . . 16 (𝑇𝐾) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾)
15857recnd 11135 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℂ)
15926nnne0d 12170 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≠ 0)
160158, 159recid2d 11888 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((1 / 𝐾) · 𝐾) = 1)
161160oveq2d 7357 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = (-((𝐹‘0) / (𝐴𝐾))↑𝑐1))
16225simprd 495 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴𝐾) ≠ 0)
16323, 152, 162divcld 11892 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
164163negcld 11454 . . . . . . . . . . . . . . . . . 18 (𝜑 → -((𝐹‘0) / (𝐴𝐾)) ∈ ℂ)
16526nnrecred 12171 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 𝐾) ∈ ℝ)
166165recnd 11135 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1 / 𝐾) ∈ ℂ)
167164, 166, 27cxpmul2d 26640 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐((1 / 𝐾) · 𝐾)) = ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾))
168164cxp1d 26637 . . . . . . . . . . . . . . . . 17 (𝜑 → (-((𝐹‘0) / (𝐴𝐾))↑𝑐1) = -((𝐹‘0) / (𝐴𝐾)))
169161, 167, 1683eqtr3d 2774 . . . . . . . . . . . . . . . 16 (𝜑 → ((-((𝐹‘0) / (𝐴𝐾))↑𝑐(1 / 𝐾))↑𝐾) = -((𝐹‘0) / (𝐴𝐾)))
170157, 169eqtrid 2778 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇𝐾) = -((𝐹‘0) / (𝐴𝐾)))
171170oveq2d 7357 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))))
172152, 163mulneg2d 11566 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴𝐾) · -((𝐹‘0) / (𝐴𝐾))) = -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))))
17323, 152, 162divcan2d 11894 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = (𝐹‘0))
174173negeqd 11349 . . . . . . . . . . . . . 14 (𝜑 → -((𝐴𝐾) · ((𝐹‘0) / (𝐴𝐾))) = -(𝐹‘0))
175171, 172, 1743eqtrd 2770 . . . . . . . . . . . . 13 (𝜑 → ((𝐴𝐾) · (𝑇𝐾)) = -(𝐹‘0))
176175oveq1d 7356 . . . . . . . . . . . 12 (𝜑 → (((𝐴𝐾) · (𝑇𝐾)) · (𝑋𝐾)) = (-(𝐹‘0) · (𝑋𝐾)))
17723, 154mulneg1d 11565 . . . . . . . . . . . 12 (𝜑 → (-(𝐹‘0) · (𝑋𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
178156, 176, 1773eqtrd 2770 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾)) = -((𝐹‘0) · (𝑋𝐾)))
179149, 178oveq12d 7359 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (1...(𝐾 − 1))((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) + ((𝐴𝐾) · ((𝑇 · 𝑋)↑𝐾))) = (0 + -((𝐹‘0) · (𝑋𝐾))))
18023, 154mulcld 11127 . . . . . . . . . . . 12 (𝜑 → ((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
181180negcld 11454 . . . . . . . . . . 11 (𝜑 → -((𝐹‘0) · (𝑋𝐾)) ∈ ℂ)
182181addlidd 11309 . . . . . . . . . 10 (𝜑 → (0 + -((𝐹‘0) · (𝑋𝐾))) = -((𝐹‘0) · (𝑋𝐾)))
183116, 179, 1823eqtrd 2770 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = -((𝐹‘0) · (𝑋𝐾)))
184102, 183oveq12d 7359 . . . . . . . 8 (𝜑 → (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
185 fveq2 6817 . . . . . . . . . 10 (𝑘 = 0 → (𝐴𝑘) = (𝐴‘0))
186 oveq2 7349 . . . . . . . . . 10 (𝑘 = 0 → ((𝑇 · 𝑋)↑𝑘) = ((𝑇 · 𝑋)↑0))
187185, 186oveq12d 7359 . . . . . . . . 9 (𝑘 = 0 → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴‘0) · ((𝑇 · 𝑋)↑0)))
18881, 52, 187fsum1p 15655 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴‘0) · ((𝑇 · 𝑋)↑0)) + Σ𝑘 ∈ ((0 + 1)...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
189101oveq1d 7356 . . . . . . . . 9 (𝜑 → (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
190 1cnd 11102 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
19123, 190, 154subdid 11568 . . . . . . . . 9 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = (((𝐹‘0) · 1) − ((𝐹‘0) · (𝑋𝐾))))
19223, 180negsubd 11473 . . . . . . . . 9 (𝜑 → ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))) = ((𝐹‘0) − ((𝐹‘0) · (𝑋𝐾))))
193189, 191, 1923eqtr4d 2776 . . . . . . . 8 (𝜑 → ((𝐹‘0) · (1 − (𝑋𝐾))) = ((𝐹‘0) + -((𝐹‘0) · (𝑋𝐾))))
194184, 188, 1933eqtr4d 2776 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐹‘0) · (1 − (𝑋𝐾))))
195194fveq2d 6821 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))))
196 1re 11107 . . . . . . . . 9 1 ∈ ℝ
197 resubcl 11420 . . . . . . . . 9 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (1 − (𝑋𝐾)) ∈ ℝ)
198196, 28, 197sylancr 587 . . . . . . . 8 (𝜑 → (1 − (𝑋𝐾)) ∈ ℝ)
199198recnd 11135 . . . . . . 7 (𝜑 → (1 − (𝑋𝐾)) ∈ ℂ)
20023, 199absmuld 15359 . . . . . 6 (𝜑 → (abs‘((𝐹‘0) · (1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))))
20113rpge0d 12933 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑋)
20211simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ ℝ+)
203202rpred 12929 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℝ)
204 min1 13083 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
205196, 203, 204sylancr 587 . . . . . . . . . . . 12 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 1)
2069, 205eqbrtrid 5121 . . . . . . . . . . 11 (𝜑𝑋 ≤ 1)
207 exple1 14079 . . . . . . . . . . 11 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ∧ 𝐾 ∈ ℕ0) → (𝑋𝐾) ≤ 1)
20814, 201, 206, 27, 207syl31anc 1375 . . . . . . . . . 10 (𝜑 → (𝑋𝐾) ≤ 1)
209 subge0 11625 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑋𝐾) ∈ ℝ) → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
210196, 28, 209sylancr 587 . . . . . . . . . 10 (𝜑 → (0 ≤ (1 − (𝑋𝐾)) ↔ (𝑋𝐾) ≤ 1))
211208, 210mpbird 257 . . . . . . . . 9 (𝜑 → 0 ≤ (1 − (𝑋𝐾)))
212198, 211absidd 15325 . . . . . . . 8 (𝜑 → (abs‘(1 − (𝑋𝐾))) = (1 − (𝑋𝐾)))
213212oveq2d 7357 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))))
21424recnd 11135 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘0)) ∈ ℂ)
215214, 190, 154subdid 11568 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘0)) · (1 − (𝑋𝐾))) = (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
216214mulridd 11124 . . . . . . . 8 (𝜑 → ((abs‘(𝐹‘0)) · 1) = (abs‘(𝐹‘0)))
217216oveq1d 7356 . . . . . . 7 (𝜑 → (((abs‘(𝐹‘0)) · 1) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
218213, 215, 2173eqtrd 2770 . . . . . 6 (𝜑 → ((abs‘(𝐹‘0)) · (abs‘(1 − (𝑋𝐾)))) = ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))))
219195, 200, 2183eqtrrd 2771 . . . . 5 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) = (abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
220219oveq1d 7356 . . . 4 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) = ((abs‘Σ𝑘 ∈ (0...𝐾)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22154, 95, 2203brtr4d 5118 . . 3 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) ≤ (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
22243abscld 15341 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22331, 222fsumrecl 15636 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ∈ ℝ)
22431, 43fsumabs 15703 . . . . . 6 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))
225 expcl 13981 . . . . . . . . . . . 12 ((𝑇 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑇𝑘) ∈ ℂ)
22612, 38, 225syl2an2r 685 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑇𝑘) ∈ ℂ)
22740, 226mulcld 11127 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · (𝑇𝑘)) ∈ ℂ)
228227abscld 15341 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
22931, 228fsumrecl 15636 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ)
23014, 35reexpcld 14065 . . . . . . . 8 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℝ)
231229, 230remulcld 11137 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
232230adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋↑(𝐾 + 1)) ∈ ℝ)
233228, 232remulcld 11137 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) ∈ ℝ)
23412adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑇 ∈ ℂ)
23515adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℂ)
236234, 235, 38mulexpd 14063 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝑇 · 𝑋)↑𝑘) = ((𝑇𝑘) · (𝑋𝑘)))
237236oveq2d 7357 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
23814adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ∈ ℝ)
239238, 38reexpcld 14065 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ)
240239recnd 11135 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℂ)
24140, 226, 240mulassd 11130 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)) = ((𝐴𝑘) · ((𝑇𝑘) · (𝑋𝑘))))
242237, 241eqtr4d 2769 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)) = (((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘)))
243242fveq2d 6821 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))))
244227, 240absmuld 15359 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(((𝐴𝑘) · (𝑇𝑘)) · (𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))))
245 elfzelz 13419 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((𝐾 + 1)...𝑁) → 𝑘 ∈ ℤ)
246 rpexpcl 13982 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℝ+𝑘 ∈ ℤ) → (𝑋𝑘) ∈ ℝ+)
24713, 245, 246syl2an 596 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ∈ ℝ+)
248247rpge0d 12933 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (𝑋𝑘))
249239, 248absidd 15325 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘(𝑋𝑘)) = (𝑋𝑘))
250249oveq2d 7357 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (abs‘(𝑋𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
251243, 244, 2503eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) = ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)))
252227absge0d 15349 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ (abs‘((𝐴𝑘) · (𝑇𝑘))))
25335adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐾 + 1) ∈ ℕ0)
25436adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
255201adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 0 ≤ 𝑋)
256206adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → 𝑋 ≤ 1)
257238, 253, 254, 255, 256leexp2rd 14157 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝑋𝑘) ≤ (𝑋↑(𝐾 + 1)))
258239, 232, 228, 252, 257lemul2ad 12057 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋𝑘)) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
259251, 258eqbrtrd 5108 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ ((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26031, 222, 233, 259fsumle 15701 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
261230recnd 11135 . . . . . . . . 9 (𝜑 → (𝑋↑(𝐾 + 1)) ∈ ℂ)
262228recnd 11135 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
26331, 261, 262fsummulc1 15687 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
264260, 263breqtrrd 5114 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) ≤ (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))))
26515, 27expp1d 14049 . . . . . . . . . . 11 (𝜑 → (𝑋↑(𝐾 + 1)) = ((𝑋𝐾) · 𝑋))
266154, 15mulcomd 11128 . . . . . . . . . . 11 (𝜑 → ((𝑋𝐾) · 𝑋) = (𝑋 · (𝑋𝐾)))
267265, 266eqtrd 2766 . . . . . . . . . 10 (𝜑 → (𝑋↑(𝐾 + 1)) = (𝑋 · (𝑋𝐾)))
268267oveq2d 7357 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
269229recnd 11135 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℂ)
270269, 15, 154mulassd 11130 . . . . . . . . 9 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) = (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋 · (𝑋𝐾))))
271268, 270eqtr4d 2769 . . . . . . . 8 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) = ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)))
272229, 14remulcld 11137 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) ∈ ℝ)
273 nnssz 12485 . . . . . . . . . . . 12 ℕ ⊆ ℤ
27461, 273sstri 3939 . . . . . . . . . . 11 {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ ℤ
27576ne0d 4287 . . . . . . . . . . . . 13 (𝜑 → {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅)
276 infssuzcl 12825 . . . . . . . . . . . . 13 (({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
27763, 275, 276sylancr 587 . . . . . . . . . . . 12 (𝜑 → inf({𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
2786, 277eqeltrid 2835 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝑛 ∈ ℕ ∣ (𝐴𝑛) ≠ 0})
279274, 278sselid 3927 . . . . . . . . . 10 (𝜑𝐾 ∈ ℤ)
28013, 279rpexpcld 14149 . . . . . . . . 9 (𝜑 → (𝑋𝐾) ∈ ℝ+)
281 peano2re 11281 . . . . . . . . . . . 12 𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) ∈ ℝ → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
282229, 281syl 17 . . . . . . . . . . 11 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ)
283282, 14remulcld 11137 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ∈ ℝ)
284229ltp1d 12047 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
285229, 282, 13, 284ltmul1dd 12984 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋))
286 min2 13084 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
287196, 203, 286sylancr 587 . . . . . . . . . . . . 13 (𝜑 → if(1 ≤ 𝑈, 1, 𝑈) ≤ 𝑈)
2889, 287eqbrtrid 5121 . . . . . . . . . . . 12 (𝜑𝑋𝑈)
289288, 8breqtrdi 5127 . . . . . . . . . . 11 (𝜑𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1)))
290 0red 11110 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
29131, 228, 252fsumge0 15697 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))))
292290, 229, 282, 291, 284lelttrd 11266 . . . . . . . . . . . 12 (𝜑 → 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))
293 lemuldiv2 11998 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (abs‘(𝐹‘0)) ∈ ℝ ∧ ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) ∈ ℝ ∧ 0 < (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))) → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
29414, 24, 282, 292, 293syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)) ↔ 𝑋 ≤ ((abs‘(𝐹‘0)) / (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1))))
295289, 294mpbird 257 . . . . . . . . . 10 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) + 1) · 𝑋) ≤ (abs‘(𝐹‘0)))
296272, 283, 24, 285, 295ltletrd 11268 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) < (abs‘(𝐹‘0)))
297272, 24, 280, 296ltmul1dd 12984 . . . . . . . 8 (𝜑 → ((Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · 𝑋) · (𝑋𝐾)) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
298271, 297eqbrtrd 5108 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · (𝑇𝑘))) · (𝑋↑(𝐾 + 1))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
299223, 231, 29, 264, 298lelttrd 11266 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝐾 + 1)...𝑁)(abs‘((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30045, 223, 29, 224, 299lelttrd 11266 . . . . 5 (𝜑 → (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))) < ((abs‘(𝐹‘0)) · (𝑋𝐾)))
30145, 29, 24, 300ltsub2dd 11725 . . . 4 (𝜑 → ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))))
30230, 45, 24ltaddsubd 11712 . . . 4 (𝜑 → ((((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)) ↔ ((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) < ((abs‘(𝐹‘0)) − (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘))))))
303301, 302mpbird 257 . . 3 (𝜑 → (((abs‘(𝐹‘0)) − ((abs‘(𝐹‘0)) · (𝑋𝐾))) + (abs‘Σ𝑘 ∈ ((𝐾 + 1)...𝑁)((𝐴𝑘) · ((𝑇 · 𝑋)↑𝑘)))) < (abs‘(𝐹‘0)))
30420, 46, 24, 221, 303lelttrd 11266 . 2 (𝜑 → (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0)))
305 2fveq3 6822 . . . 4 (𝑥 = (𝑇 · 𝑋) → (abs‘(𝐹𝑥)) = (abs‘(𝐹‘(𝑇 · 𝑋))))
306305breq1d 5096 . . 3 (𝑥 = (𝑇 · 𝑋) → ((abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)) ↔ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))))
307306rspcev 3572 . 2 (((𝑇 · 𝑋) ∈ ℂ ∧ (abs‘(𝐹‘(𝑇 · 𝑋))) < (abs‘(𝐹‘0))) → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
30816, 304, 307syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℂ (abs‘(𝐹𝑥)) < (abs‘(𝐹‘0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  cun 3895  cin 3896  wss 3897  c0 4278  ifcif 4470   class class class wbr 5086  wf 6472  cfv 6476  (class class class)co 7341  Fincfn 8864  infcinf 9320  cc 10999  cr 11000  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006   < clt 11141  cle 11142  cmin 11339  -cneg 11340   / cdiv 11769  cn 12120  0cn0 12376  cz 12463  cuz 12727  +crp 12885  ...cfz 13402  cexp 13963  abscabs 15136  Σcsu 15588  0𝑝c0p 25592  Polycply 26111  coeffccoe 26113  degcdgr 26114  𝑐ccxp 26486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-0p 25593  df-limc 25789  df-dv 25790  df-ply 26115  df-coe 26117  df-dgr 26118  df-log 26487  df-cxp 26488
This theorem is referenced by:  ftalem6  27010
  Copyright terms: Public domain W3C validator