MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepssdm Structured version   Visualization version   GIF version

Theorem nosepssdm 27746
Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepssdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepssdm
StepHypRef Expression
1 nosepne 27740 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
21neneqd 2943 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
3 nodmord 27713 . . . . . . . . 9 (𝐴 No → Ord dom 𝐴)
433ad2ant1 1132 . . . . . . . 8 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐴)
5 ordn2lp 6406 . . . . . . . 8 (Ord dom 𝐴 → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
64, 5syl 17 . . . . . . 7 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
7 imnan 399 . . . . . . 7 ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
86, 7sylibr 234 . . . . . 6 ((𝐴 No 𝐵 No 𝐴𝐵) → (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
98imp 406 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴)
10 ndmfv 6942 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
119, 10syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
12 nosepeq 27745 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴))
13 simpl1 1190 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐴 No )
14 ordirr 6404 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
15 ndmfv 6942 . . . . . . . . . 10 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
1613, 3, 14, 154syl 19 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = ∅)
1716eqeq1d 2737 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴)))
18 eqcom 2742 . . . . . . . 8 (∅ = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)
1917, 18bitrdi 287 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅))
20 simpl2 1191 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐵 No )
21 nofun 27709 . . . . . . . . . . 11 (𝐵 No → Fun 𝐵)
2220, 21syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → Fun 𝐵)
23 nosgnn0 27718 . . . . . . . . . . 11 ¬ ∅ ∈ {1o, 2o}
24 norn 27711 . . . . . . . . . . . . 13 (𝐵 No → ran 𝐵 ⊆ {1o, 2o})
2520, 24syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ran 𝐵 ⊆ {1o, 2o})
2625sseld 3994 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈ {1o, 2o}))
2723, 26mtoi 199 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ ∅ ∈ ran 𝐵)
28 funeldmb 7379 . . . . . . . . . 10 ((Fun 𝐵 ∧ ¬ ∅ ∈ ran 𝐵) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
2922, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
3029necon2bbid 2982 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵))
31 nodmord 27713 . . . . . . . . . . . 12 (𝐵 No → Ord dom 𝐵)
32313ad2ant2 1133 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐵)
33 ordtr1 6429 . . . . . . . . . . 11 (Ord dom 𝐵 → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3432, 33syl 17 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝐴𝐵) → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3534expdimp 452 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵))
3635con3d 152 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3730, 36sylbid 240 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3819, 37sylbid 240 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3912, 38mpd 15 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
40 ndmfv 6942 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4139, 40syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4211, 41eqtr4d 2778 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
432, 42mtand 816 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
44 nosepon 27725 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
45 nodmon 27710 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
46453ad2ant1 1132 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → dom 𝐴 ∈ On)
47 ontri1 6420 . . 3 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4844, 46, 47syl2anc 584 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4943, 48mpbird 257 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  wss 3963  c0 4339  {cpr 4633   cint 4951  dom cdm 5689  ran crn 5690  Ord word 6385  Oncon0 6386  Fun wfun 6557  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703
This theorem is referenced by:  nosupbnd2lem1  27775  noinfbnd2lem1  27790  noetasuplem4  27796  noetainflem4  27800
  Copyright terms: Public domain W3C validator