Proof of Theorem nosepssdm
| Step | Hyp | Ref
| Expression |
| 1 | | nosepne 27649 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) ≠ (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 2 | 1 | neneqd 2938 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 3 | | nodmord 27622 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → Ord dom 𝐴) |
| 5 | | ordn2lp 6377 |
. . . . . . . 8
⊢ (Ord dom
𝐴 → ¬ (dom 𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 7 | | imnan 399 |
. . . . . . 7
⊢ ((dom
𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 8 | 6, 7 | sylibr 234 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴)) |
| 9 | 8 | imp 406 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴) |
| 10 | | ndmfv 6916 |
. . . . 5
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐴 → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 11 | 9, 10 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 12 | | nosepeq 27654 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴)) |
| 13 | | simpl1 1192 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝐴 ∈ No
) |
| 14 | | ordirr 6375 |
. . . . . . . . . 10
⊢ (Ord dom
𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) |
| 15 | | ndmfv 6916 |
. . . . . . . . . 10
⊢ (¬
dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅) |
| 16 | 13, 3, 14, 15 | 4syl 19 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘dom 𝐴) = ∅) |
| 17 | 16 | eqeq1d 2738 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴))) |
| 18 | | eqcom 2743 |
. . . . . . . 8
⊢ (∅
= (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅) |
| 19 | 17, 18 | bitrdi 287 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)) |
| 20 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → 𝐵 ∈ No
) |
| 21 | | nofun 27618 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → Fun 𝐵) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → Fun 𝐵) |
| 23 | | nosgnn0 27627 |
. . . . . . . . . . 11
⊢ ¬
∅ ∈ {1o, 2o} |
| 24 | | norn 27620 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈
No → ran 𝐵
⊆ {1o, 2o}) |
| 25 | 20, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ran 𝐵 ⊆ {1o,
2o}) |
| 26 | 25 | sseld 3962 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈
{1o, 2o})) |
| 27 | 23, 26 | mtoi 199 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∅ ∈ ran 𝐵) |
| 28 | | funeldmb 7357 |
. . . . . . . . . 10
⊢ ((Fun
𝐵 ∧ ¬ ∅
∈ ran 𝐵) → (dom
𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅)) |
| 29 | 22, 27, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅)) |
| 30 | 29 | necon2bbid 2976 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵)) |
| 31 | | nodmord 27622 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
No → Ord dom 𝐵) |
| 32 | 31 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → Ord dom 𝐵) |
| 33 | | ordtr1 6401 |
. . . . . . . . . . 11
⊢ (Ord dom
𝐵 → ((dom 𝐴 ∈ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ((dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)) |
| 35 | 34 | expdimp 452 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵)) |
| 36 | 35 | con3d 152 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 37 | 30, 36 | sylbid 240 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 38 | 19, 37 | sylbid 240 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵)) |
| 39 | 12, 38 | mpd 15 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → ¬ ∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵) |
| 40 | | ndmfv 6916 |
. . . . 5
⊢ (¬
∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ dom 𝐵 → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 41 | 39, 40 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = ∅) |
| 42 | 11, 41 | eqtr4d 2774 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) ∧ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) → (𝐴‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) = (𝐵‘∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 43 | 2, 42 | mtand 815 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)}) |
| 44 | | nosepon 27634 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On) |
| 45 | | nodmon 27619 |
. . . 4
⊢ (𝐴 ∈
No → dom 𝐴
∈ On) |
| 46 | 45 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → dom 𝐴 ∈ On) |
| 47 | | ontri1 6391 |
. . 3
⊢ ((∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → (∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 48 | 44, 46, 47 | syl2anc 584 |
. 2
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → (∩
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 ∈ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)})) |
| 49 | 43, 48 | mpbird 257 |
1
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ⊆ dom 𝐴) |