MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepssdm Structured version   Visualization version   GIF version

Theorem nosepssdm 27732
Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepssdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepssdm
StepHypRef Expression
1 nosepne 27726 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
21neneqd 2944 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
3 nodmord 27699 . . . . . . . . 9 (𝐴 No → Ord dom 𝐴)
433ad2ant1 1133 . . . . . . . 8 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐴)
5 ordn2lp 6403 . . . . . . . 8 (Ord dom 𝐴 → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
64, 5syl 17 . . . . . . 7 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
7 imnan 399 . . . . . . 7 ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
86, 7sylibr 234 . . . . . 6 ((𝐴 No 𝐵 No 𝐴𝐵) → (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
98imp 406 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴)
10 ndmfv 6940 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
119, 10syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
12 nosepeq 27731 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴))
13 simpl1 1191 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐴 No )
14 ordirr 6401 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
15 ndmfv 6940 . . . . . . . . . 10 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
1613, 3, 14, 154syl 19 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = ∅)
1716eqeq1d 2738 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴)))
18 eqcom 2743 . . . . . . . 8 (∅ = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)
1917, 18bitrdi 287 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅))
20 simpl2 1192 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐵 No )
21 nofun 27695 . . . . . . . . . . 11 (𝐵 No → Fun 𝐵)
2220, 21syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → Fun 𝐵)
23 nosgnn0 27704 . . . . . . . . . . 11 ¬ ∅ ∈ {1o, 2o}
24 norn 27697 . . . . . . . . . . . . 13 (𝐵 No → ran 𝐵 ⊆ {1o, 2o})
2520, 24syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ran 𝐵 ⊆ {1o, 2o})
2625sseld 3981 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈ {1o, 2o}))
2723, 26mtoi 199 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ ∅ ∈ ran 𝐵)
28 funeldmb 7380 . . . . . . . . . 10 ((Fun 𝐵 ∧ ¬ ∅ ∈ ran 𝐵) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
2922, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
3029necon2bbid 2983 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵))
31 nodmord 27699 . . . . . . . . . . . 12 (𝐵 No → Ord dom 𝐵)
32313ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐵)
33 ordtr1 6426 . . . . . . . . . . 11 (Ord dom 𝐵 → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3432, 33syl 17 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝐴𝐵) → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3534expdimp 452 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵))
3635con3d 152 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3730, 36sylbid 240 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3819, 37sylbid 240 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3912, 38mpd 15 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
40 ndmfv 6940 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4139, 40syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4211, 41eqtr4d 2779 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
432, 42mtand 815 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
44 nosepon 27711 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
45 nodmon 27696 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
46453ad2ant1 1133 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → dom 𝐴 ∈ On)
47 ontri1 6417 . . 3 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4844, 46, 47syl2anc 584 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4943, 48mpbird 257 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  {crab 3435  wss 3950  c0 4332  {cpr 4627   cint 4945  dom cdm 5684  ran crn 5685  Ord word 6382  Oncon0 6383  Fun wfun 6554  cfv 6560  1oc1o 8500  2oc2o 8501   No csur 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689
This theorem is referenced by:  nosupbnd2lem1  27761  noinfbnd2lem1  27776  noetasuplem4  27782  noetainflem4  27786
  Copyright terms: Public domain W3C validator