Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepssdm Structured version   Visualization version   GIF version

Theorem nosepssdm 33303
Description: Given two non-equal surreals, their separator is less than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepssdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepssdm
StepHypRef Expression
1 nosepne 33298 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
21neneqd 2992 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
3 nodmord 33273 . . . . . . . . 9 (𝐴 No → Ord dom 𝐴)
433ad2ant1 1130 . . . . . . . 8 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐴)
5 ordn2lp 6179 . . . . . . . 8 (Ord dom 𝐴 → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
64, 5syl 17 . . . . . . 7 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
7 imnan 403 . . . . . . 7 ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
86, 7sylibr 237 . . . . . 6 ((𝐴 No 𝐵 No 𝐴𝐵) → (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
98imp 410 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴)
10 ndmfv 6675 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
119, 10syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
12 nosepeq 33302 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴))
13 simpl1 1188 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐴 No )
1413, 3syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → Ord dom 𝐴)
15 ordirr 6177 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
16 ndmfv 6675 . . . . . . . . . 10 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
1714, 15, 163syl 18 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = ∅)
1817eqeq1d 2800 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴)))
19 eqcom 2805 . . . . . . . 8 (∅ = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)
2018, 19syl6bb 290 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅))
21 simpl2 1189 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐵 No )
22 nofun 33269 . . . . . . . . . . 11 (𝐵 No → Fun 𝐵)
2321, 22syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → Fun 𝐵)
24 nosgnn0 33278 . . . . . . . . . . 11 ¬ ∅ ∈ {1o, 2o}
25 norn 33271 . . . . . . . . . . . . 13 (𝐵 No → ran 𝐵 ⊆ {1o, 2o})
2621, 25syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ran 𝐵 ⊆ {1o, 2o})
2726sseld 3914 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈ {1o, 2o}))
2824, 27mtoi 202 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ ∅ ∈ ran 𝐵)
29 funeldmb 33119 . . . . . . . . . 10 ((Fun 𝐵 ∧ ¬ ∅ ∈ ran 𝐵) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
3023, 28, 29syl2anc 587 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
3130necon2bbid 3030 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵))
32 nodmord 33273 . . . . . . . . . . . 12 (𝐵 No → Ord dom 𝐵)
33323ad2ant2 1131 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐵)
34 ordtr1 6202 . . . . . . . . . . 11 (Ord dom 𝐵 → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3533, 34syl 17 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝐴𝐵) → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3635expdimp 456 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵))
3736con3d 155 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3831, 37sylbid 243 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3920, 38sylbid 243 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
4012, 39mpd 15 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
41 ndmfv 6675 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4240, 41syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4311, 42eqtr4d 2836 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
442, 43mtand 815 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
45 nosepon 33285 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
46 nodmon 33270 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
47463ad2ant1 1130 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → dom 𝐴 ∈ On)
48 ontri1 6193 . . 3 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4945, 47, 48syl2anc 587 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
5044, 49mpbird 260 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  wss 3881  c0 4243  {cpr 4527   cint 4838  dom cdm 5519  ran crn 5520  Ord word 6158  Oncon0 6159  Fun wfun 6318  cfv 6324  1oc1o 8078  2oc2o 8079   No csur 33260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-2o 8086  df-no 33263  df-slt 33264
This theorem is referenced by:  nosupbnd2lem1  33328  noetalem3  33332
  Copyright terms: Public domain W3C validator