MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosepssdm Structured version   Visualization version   GIF version

Theorem nosepssdm 27655
Description: Given two non-equal surreals, their separator is less-than or equal to the domain of one of them. Part of Lemma 2.1.1 of [Lipparini] p. 3. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosepssdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepssdm
StepHypRef Expression
1 nosepne 27649 . . . 4 ((𝐴 No 𝐵 No 𝐴𝐵) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) ≠ (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
21neneqd 2938 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
3 nodmord 27622 . . . . . . . . 9 (𝐴 No → Ord dom 𝐴)
433ad2ant1 1133 . . . . . . . 8 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐴)
5 ordn2lp 6377 . . . . . . . 8 (Ord dom 𝐴 → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
64, 5syl 17 . . . . . . 7 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
7 imnan 399 . . . . . . 7 ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴) ↔ ¬ (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
86, 7sylibr 234 . . . . . 6 ((𝐴 No 𝐵 No 𝐴𝐵) → (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴))
98imp 406 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴)
10 ndmfv 6916 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐴 → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
119, 10syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
12 nosepeq 27654 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = (𝐵‘dom 𝐴))
13 simpl1 1192 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐴 No )
14 ordirr 6375 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
15 ndmfv 6916 . . . . . . . . . 10 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
1613, 3, 14, 154syl 19 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴‘dom 𝐴) = ∅)
1716eqeq1d 2738 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ ∅ = (𝐵‘dom 𝐴)))
18 eqcom 2743 . . . . . . . 8 (∅ = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅)
1917, 18bitrdi 287 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) ↔ (𝐵‘dom 𝐴) = ∅))
20 simpl2 1193 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → 𝐵 No )
21 nofun 27618 . . . . . . . . . . 11 (𝐵 No → Fun 𝐵)
2220, 21syl 17 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → Fun 𝐵)
23 nosgnn0 27627 . . . . . . . . . . 11 ¬ ∅ ∈ {1o, 2o}
24 norn 27620 . . . . . . . . . . . . 13 (𝐵 No → ran 𝐵 ⊆ {1o, 2o})
2520, 24syl 17 . . . . . . . . . . . 12 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ran 𝐵 ⊆ {1o, 2o})
2625sseld 3962 . . . . . . . . . . 11 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (∅ ∈ ran 𝐵 → ∅ ∈ {1o, 2o}))
2723, 26mtoi 199 . . . . . . . . . 10 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ ∅ ∈ ran 𝐵)
28 funeldmb 7357 . . . . . . . . . 10 ((Fun 𝐵 ∧ ¬ ∅ ∈ ran 𝐵) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
2922, 27, 28syl2anc 584 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (dom 𝐴 ∈ dom 𝐵 ↔ (𝐵‘dom 𝐴) ≠ ∅))
3029necon2bbid 2976 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐵))
31 nodmord 27622 . . . . . . . . . . . 12 (𝐵 No → Ord dom 𝐵)
32313ad2ant2 1134 . . . . . . . . . . 11 ((𝐴 No 𝐵 No 𝐴𝐵) → Ord dom 𝐵)
33 ordtr1 6401 . . . . . . . . . . 11 (Ord dom 𝐵 → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3432, 33syl 17 . . . . . . . . . 10 ((𝐴 No 𝐵 No 𝐴𝐵) → ((dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∧ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵))
3534expdimp 452 . . . . . . . . 9 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → dom 𝐴 ∈ dom 𝐵))
3635con3d 152 . . . . . . . 8 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (¬ dom 𝐴 ∈ dom 𝐵 → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3730, 36sylbid 240 . . . . . . 7 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐵‘dom 𝐴) = ∅ → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3819, 37sylbid 240 . . . . . 6 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ((𝐴‘dom 𝐴) = (𝐵‘dom 𝐴) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵))
3912, 38mpd 15 . . . . 5 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → ¬ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵)
40 ndmfv 6916 . . . . 5 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ dom 𝐵 → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4139, 40syl 17 . . . 4 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = ∅)
4211, 41eqtr4d 2774 . . 3 (((𝐴 No 𝐵 No 𝐴𝐵) ∧ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) → (𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}) = (𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
432, 42mtand 815 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)})
44 nosepon 27634 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On)
45 nodmon 27619 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
46453ad2ant1 1133 . . 3 ((𝐴 No 𝐵 No 𝐴𝐵) → dom 𝐴 ∈ On)
47 ontri1 6391 . . 3 (( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ On ∧ dom 𝐴 ∈ On) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4844, 46, 47syl2anc 584 . 2 ((𝐴 No 𝐵 No 𝐴𝐵) → ( {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴 ↔ ¬ dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)}))
4943, 48mpbird 257 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ⊆ dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  {crab 3420  wss 3931  c0 4313  {cpr 4608   cint 4927  dom cdm 5659  ran crn 5660  Ord word 6356  Oncon0 6357  Fun wfun 6530  cfv 6536  1oc1o 8478  2oc2o 8479   No csur 27608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612
This theorem is referenced by:  nosupbnd2lem1  27684  noinfbnd2lem1  27699  noetasuplem4  27705  noetainflem4  27709
  Copyright terms: Public domain W3C validator