Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5elem Structured version   Visualization version   GIF version

Theorem flt4lem5elem 41389
Description: Version of fltaccoprm 41378 and fltbccoprm 41379 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16659, dvds2addd 16231, and prmdvdsexp 16648, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5elem.m (𝜑𝑀 ∈ ℕ)
flt4lem5elem.r (𝜑𝑅 ∈ ℕ)
flt4lem5elem.s (𝜑𝑆 ∈ ℕ)
flt4lem5elem.1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
flt4lem5elem.2 (𝜑 → (𝑅 gcd 𝑆) = 1)
Assertion
Ref Expression
flt4lem5elem (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))

Proof of Theorem flt4lem5elem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 flt4lem5elem.2 . . . . 5 (𝜑 → (𝑅 gcd 𝑆) = 1)
2 flt4lem5elem.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 flt4lem5elem.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
42, 3prmdvdsncoprmbd 16659 . . . . . 6 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆) ↔ (𝑅 gcd 𝑆) ≠ 1))
54necon2bbid 2984 . . . . 5 (𝜑 → ((𝑅 gcd 𝑆) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
61, 5mpbid 231 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆))
7 simprl 769 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑅)
8 simplr 767 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℙ)
9 prmz 16608 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℤ)
11 flt4lem5elem.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
1211nnzd 12581 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1312ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 ∈ ℤ)
142nnsqcld 14203 . . . . . . . . . . . 12 (𝜑 → (𝑅↑2) ∈ ℕ)
1514nnzd 12581 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℤ)
1615ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℤ)
17 simprr 771 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑀)
182nnzd 12581 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℤ)
1918ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑅 ∈ ℤ)
20 prmdvdssq 16651 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
218, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
227, 21mpbid 231 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
2310, 13, 16, 17, 22dvds2subd 16232 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑅↑2)))
2414nncnd 12224 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
2524ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
263nnsqcld 14203 . . . . . . . . . . . 12 (𝜑 → (𝑆↑2) ∈ ℕ)
2726nncnd 12224 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℂ)
2827ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
29 flt4lem5elem.1 . . . . . . . . . . 11 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
3029ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
3125, 28, 30mvrladdd 11623 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑀 − (𝑅↑2)) = (𝑆↑2))
3223, 31breqtrd 5173 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
333nnzd 12581 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
3433ad2antrr 724 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑆 ∈ ℤ)
35 prmdvdssq 16651 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
368, 34, 35syl2anc 584 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
3732, 36mpbird 256 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑆)
387, 37jca 512 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
3938ex 413 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑅𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
4039reximdva 3168 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
416, 40mtod 197 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀))
422, 11prmdvdsncoprmbd 16659 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) ↔ (𝑅 gcd 𝑀) ≠ 1))
4342necon2bbid 2984 . . 3 (𝜑 → ((𝑅 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀)))
4441, 43mpbird 256 . 2 (𝜑 → (𝑅 gcd 𝑀) = 1)
45 simplr 767 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℙ)
4645, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℤ)
4712ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 ∈ ℤ)
4826nnzd 12581 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℤ)
4948ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℤ)
50 simprr 771 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑀)
51 simprl 769 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑆)
5233ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑆 ∈ ℤ)
5345, 52, 35syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
5451, 53mpbid 231 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
5546, 47, 49, 50, 54dvds2subd 16232 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑆↑2)))
5624ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
5727ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
5829ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
5956, 57, 58mvrraddd 11622 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑀 − (𝑆↑2)) = (𝑅↑2))
6055, 59breqtrd 5173 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
6118ad2antrr 724 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑅 ∈ ℤ)
6245, 61, 20syl2anc 584 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
6360, 62mpbird 256 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑅)
6463, 51jca 512 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
6564ex 413 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑆𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
6665reximdva 3168 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
676, 66mtod 197 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀))
683, 11prmdvdsncoprmbd 16659 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) ↔ (𝑆 gcd 𝑀) ≠ 1))
6968necon2bbid 2984 . . 3 (𝜑 → ((𝑆 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀)))
7067, 69mpbird 256 . 2 (𝜑 → (𝑆 gcd 𝑀) = 1)
7144, 70jca 512 1 (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070   class class class wbr 5147  (class class class)co 7405  cc 11104  1c1 11107   + caddc 11109  cmin 11440  cn 12208  2c2 12263  cz 12554  cexp 14023  cdvds 16193   gcd cgcd 16431  cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605
This theorem is referenced by:  flt4lem5e  41394
  Copyright terms: Public domain W3C validator