Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5elem Structured version   Visualization version   GIF version

Theorem flt4lem5elem 42606
Description: Version of fltaccoprm 42595 and fltbccoprm 42596 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16774, dvds2addd 16340, and prmdvdsexp 16762, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5elem.m (𝜑𝑀 ∈ ℕ)
flt4lem5elem.r (𝜑𝑅 ∈ ℕ)
flt4lem5elem.s (𝜑𝑆 ∈ ℕ)
flt4lem5elem.1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
flt4lem5elem.2 (𝜑 → (𝑅 gcd 𝑆) = 1)
Assertion
Ref Expression
flt4lem5elem (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))

Proof of Theorem flt4lem5elem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 flt4lem5elem.2 . . . . 5 (𝜑 → (𝑅 gcd 𝑆) = 1)
2 flt4lem5elem.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 flt4lem5elem.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
42, 3prmdvdsncoprmbd 16774 . . . . . 6 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆) ↔ (𝑅 gcd 𝑆) ≠ 1))
54necon2bbid 2990 . . . . 5 (𝜑 → ((𝑅 gcd 𝑆) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
61, 5mpbid 232 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆))
7 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑅)
8 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℙ)
9 prmz 16722 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℤ)
11 flt4lem5elem.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
1211nnzd 12666 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1312ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 ∈ ℤ)
142nnsqcld 14293 . . . . . . . . . . . 12 (𝜑 → (𝑅↑2) ∈ ℕ)
1514nnzd 12666 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℤ)
1615ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℤ)
17 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑀)
182nnzd 12666 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℤ)
1918ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑅 ∈ ℤ)
20 prmdvdssq 16765 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
218, 19, 20syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
227, 21mpbid 232 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
2310, 13, 16, 17, 22dvds2subd 16341 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑅↑2)))
2414nncnd 12309 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
2524ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
263nnsqcld 14293 . . . . . . . . . . . 12 (𝜑 → (𝑆↑2) ∈ ℕ)
2726nncnd 12309 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℂ)
2827ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
29 flt4lem5elem.1 . . . . . . . . . . 11 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
3029ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
3125, 28, 30mvrladdd 11703 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑀 − (𝑅↑2)) = (𝑆↑2))
3223, 31breqtrd 5192 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
333nnzd 12666 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
3433ad2antrr 725 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑆 ∈ ℤ)
35 prmdvdssq 16765 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
368, 34, 35syl2anc 583 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
3732, 36mpbird 257 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑆)
387, 37jca 511 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
3938ex 412 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑅𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
4039reximdva 3174 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
416, 40mtod 198 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀))
422, 11prmdvdsncoprmbd 16774 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) ↔ (𝑅 gcd 𝑀) ≠ 1))
4342necon2bbid 2990 . . 3 (𝜑 → ((𝑅 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀)))
4441, 43mpbird 257 . 2 (𝜑 → (𝑅 gcd 𝑀) = 1)
45 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℙ)
4645, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℤ)
4712ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 ∈ ℤ)
4826nnzd 12666 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℤ)
4948ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℤ)
50 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑀)
51 simprl 770 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑆)
5233ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑆 ∈ ℤ)
5345, 52, 35syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
5451, 53mpbid 232 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
5546, 47, 49, 50, 54dvds2subd 16341 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑆↑2)))
5624ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
5727ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
5829ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
5956, 57, 58mvrraddd 11702 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑀 − (𝑆↑2)) = (𝑅↑2))
6055, 59breqtrd 5192 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
6118ad2antrr 725 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑅 ∈ ℤ)
6245, 61, 20syl2anc 583 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
6360, 62mpbird 257 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑅)
6463, 51jca 511 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
6564ex 412 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑆𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
6665reximdva 3174 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
676, 66mtod 198 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀))
683, 11prmdvdsncoprmbd 16774 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) ↔ (𝑆 gcd 𝑀) ≠ 1))
6968necon2bbid 2990 . . 3 (𝜑 → ((𝑆 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀)))
7067, 69mpbird 257 . 2 (𝜑 → (𝑆 gcd 𝑀) = 1)
7144, 70jca 511 1 (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  cmin 11520  cn 12293  2c2 12348  cz 12639  cexp 14112  cdvds 16302   gcd cgcd 16540  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719
This theorem is referenced by:  flt4lem5e  42611
  Copyright terms: Public domain W3C validator