Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5elem Structured version   Visualization version   GIF version

Theorem flt4lem5elem 40015
Description: Version of fltaccoprm 40004 and fltbccoprm 40005 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16135, dvds2addd 15706, and prmdvdsexp 16124, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5elem.m (𝜑𝑀 ∈ ℕ)
flt4lem5elem.r (𝜑𝑅 ∈ ℕ)
flt4lem5elem.s (𝜑𝑆 ∈ ℕ)
flt4lem5elem.1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
flt4lem5elem.2 (𝜑 → (𝑅 gcd 𝑆) = 1)
Assertion
Ref Expression
flt4lem5elem (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))

Proof of Theorem flt4lem5elem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 flt4lem5elem.2 . . . . 5 (𝜑 → (𝑅 gcd 𝑆) = 1)
2 flt4lem5elem.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 flt4lem5elem.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
42, 3prmdvdsncoprmbd 16135 . . . . . 6 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆) ↔ (𝑅 gcd 𝑆) ≠ 1))
54necon2bbid 2994 . . . . 5 (𝜑 → ((𝑅 gcd 𝑆) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
61, 5mpbid 235 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆))
7 simprl 770 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑅)
8 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℙ)
9 prmz 16084 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℤ)
11 flt4lem5elem.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
1211nnzd 12138 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1312ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 ∈ ℤ)
142nnsqcld 13668 . . . . . . . . . . . 12 (𝜑 → (𝑅↑2) ∈ ℕ)
1514nnzd 12138 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℤ)
1615ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℤ)
17 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑀)
182nnzd 12138 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℤ)
1918ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑅 ∈ ℤ)
20 prmdvdssq 16127 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
218, 19, 20syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
227, 21mpbid 235 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
2310, 13, 16, 17, 22dvds2subd 15707 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑅↑2)))
2414nncnd 11703 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
2524ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
263nnsqcld 13668 . . . . . . . . . . . 12 (𝜑 → (𝑆↑2) ∈ ℕ)
2726nncnd 11703 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℂ)
2827ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
29 flt4lem5elem.1 . . . . . . . . . . 11 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
3029ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
3125, 28, 30mvrladdd 11104 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑀 − (𝑅↑2)) = (𝑆↑2))
3223, 31breqtrd 5062 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
333nnzd 12138 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
3433ad2antrr 725 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑆 ∈ ℤ)
35 prmdvdssq 16127 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
368, 34, 35syl2anc 587 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
3732, 36mpbird 260 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑆)
387, 37jca 515 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
3938ex 416 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑅𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
4039reximdva 3198 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
416, 40mtod 201 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀))
422, 11prmdvdsncoprmbd 16135 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) ↔ (𝑅 gcd 𝑀) ≠ 1))
4342necon2bbid 2994 . . 3 (𝜑 → ((𝑅 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀)))
4441, 43mpbird 260 . 2 (𝜑 → (𝑅 gcd 𝑀) = 1)
45 simplr 768 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℙ)
4645, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℤ)
4712ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 ∈ ℤ)
4826nnzd 12138 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℤ)
4948ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℤ)
50 simprr 772 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑀)
51 simprl 770 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑆)
5233ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑆 ∈ ℤ)
5345, 52, 35syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
5451, 53mpbid 235 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
5546, 47, 49, 50, 54dvds2subd 15707 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑆↑2)))
5624ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
5727ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
5829ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
5956, 57, 58mvrraddd 11103 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑀 − (𝑆↑2)) = (𝑅↑2))
6055, 59breqtrd 5062 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
6118ad2antrr 725 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑅 ∈ ℤ)
6245, 61, 20syl2anc 587 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
6360, 62mpbird 260 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑅)
6463, 51jca 515 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
6564ex 416 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑆𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
6665reximdva 3198 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
676, 66mtod 201 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀))
683, 11prmdvdsncoprmbd 16135 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) ↔ (𝑆 gcd 𝑀) ≠ 1))
6968necon2bbid 2994 . . 3 (𝜑 → ((𝑆 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀)))
7067, 69mpbird 260 . 2 (𝜑 → (𝑆 gcd 𝑀) = 1)
7144, 70jca 515 1 (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071   class class class wbr 5036  (class class class)co 7156  cc 10586  1c1 10589   + caddc 10591  cmin 10921  cn 11687  2c2 11742  cz 12033  cexp 13492  cdvds 15668   gcd cgcd 15906  cprime 16080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-fz 12953  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-dvds 15669  df-gcd 15907  df-prm 16081
This theorem is referenced by:  flt4lem5e  40020
  Copyright terms: Public domain W3C validator