Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5elem Structured version   Visualization version   GIF version

Theorem flt4lem5elem 40975
Description: Version of fltaccoprm 40964 and fltbccoprm 40965 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16602, dvds2addd 16174, and prmdvdsexp 16591, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5elem.m (𝜑𝑀 ∈ ℕ)
flt4lem5elem.r (𝜑𝑅 ∈ ℕ)
flt4lem5elem.s (𝜑𝑆 ∈ ℕ)
flt4lem5elem.1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
flt4lem5elem.2 (𝜑 → (𝑅 gcd 𝑆) = 1)
Assertion
Ref Expression
flt4lem5elem (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))

Proof of Theorem flt4lem5elem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 flt4lem5elem.2 . . . . 5 (𝜑 → (𝑅 gcd 𝑆) = 1)
2 flt4lem5elem.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 flt4lem5elem.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
42, 3prmdvdsncoprmbd 16602 . . . . . 6 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆) ↔ (𝑅 gcd 𝑆) ≠ 1))
54necon2bbid 2987 . . . . 5 (𝜑 → ((𝑅 gcd 𝑆) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
61, 5mpbid 231 . . . 4 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆))
7 simprl 769 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑅)
8 simplr 767 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℙ)
9 prmz 16551 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∈ ℤ)
11 flt4lem5elem.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
1211nnzd 12526 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1312ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 ∈ ℤ)
142nnsqcld 14147 . . . . . . . . . . . 12 (𝜑 → (𝑅↑2) ∈ ℕ)
1514nnzd 12526 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℤ)
1615ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℤ)
17 simprr 771 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑀)
182nnzd 12526 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℤ)
1918ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑅 ∈ ℤ)
20 prmdvdssq 16594 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ 𝑅 ∈ ℤ) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
218, 19, 20syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
227, 21mpbid 231 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
2310, 13, 16, 17, 22dvds2subd 16175 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑅↑2)))
2414nncnd 12169 . . . . . . . . . . 11 (𝜑 → (𝑅↑2) ∈ ℂ)
2524ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
263nnsqcld 14147 . . . . . . . . . . . 12 (𝜑 → (𝑆↑2) ∈ ℕ)
2726nncnd 12169 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℂ)
2827ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
29 flt4lem5elem.1 . . . . . . . . . . 11 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
3029ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
3125, 28, 30mvrladdd 11568 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑀 − (𝑅↑2)) = (𝑆↑2))
3223, 31breqtrd 5131 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
333nnzd 12526 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
3433ad2antrr 724 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑆 ∈ ℤ)
35 prmdvdssq 16594 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝑆 ∈ ℤ) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
368, 34, 35syl2anc 584 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
3732, 36mpbird 256 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → 𝑝𝑆)
387, 37jca 512 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑅𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
3938ex 413 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑅𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
4039reximdva 3165 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
416, 40mtod 197 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀))
422, 11prmdvdsncoprmbd 16602 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀) ↔ (𝑅 gcd 𝑀) ≠ 1))
4342necon2bbid 2987 . . 3 (𝜑 → ((𝑅 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑀)))
4441, 43mpbird 256 . 2 (𝜑 → (𝑅 gcd 𝑀) = 1)
45 simplr 767 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℙ)
4645, 9syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∈ ℤ)
4712ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 ∈ ℤ)
4826nnzd 12526 . . . . . . . . . . 11 (𝜑 → (𝑆↑2) ∈ ℤ)
4948ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℤ)
50 simprr 771 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑀)
51 simprl 769 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑆)
5233ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑆 ∈ ℤ)
5345, 52, 35syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑆𝑝 ∥ (𝑆↑2)))
5451, 53mpbid 231 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑆↑2))
5546, 47, 49, 50, 54dvds2subd 16175 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑀 − (𝑆↑2)))
5624ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑅↑2) ∈ ℂ)
5727ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑆↑2) ∈ ℂ)
5829ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
5956, 57, 58mvrraddd 11567 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑀 − (𝑆↑2)) = (𝑅↑2))
6055, 59breqtrd 5131 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝 ∥ (𝑅↑2))
6118ad2antrr 724 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑅 ∈ ℤ)
6245, 61, 20syl2anc 584 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝 ∥ (𝑅↑2)))
6360, 62mpbird 256 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → 𝑝𝑅)
6463, 51jca 512 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ (𝑝𝑆𝑝𝑀)) → (𝑝𝑅𝑝𝑆))
6564ex 413 . . . . 5 ((𝜑𝑝 ∈ ℙ) → ((𝑝𝑆𝑝𝑀) → (𝑝𝑅𝑝𝑆)))
6665reximdva 3165 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) → ∃𝑝 ∈ ℙ (𝑝𝑅𝑝𝑆)))
676, 66mtod 197 . . 3 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀))
683, 11prmdvdsncoprmbd 16602 . . . 4 (𝜑 → (∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀) ↔ (𝑆 gcd 𝑀) ≠ 1))
6968necon2bbid 2987 . . 3 (𝜑 → ((𝑆 gcd 𝑀) = 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑆𝑝𝑀)))
7067, 69mpbird 256 . 2 (𝜑 → (𝑆 gcd 𝑀) = 1)
7144, 70jca 512 1 (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054  cmin 11385  cn 12153  2c2 12208  cz 12499  cexp 13967  cdvds 16136   gcd cgcd 16374  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548
This theorem is referenced by:  flt4lem5e  40980
  Copyright terms: Public domain W3C validator