MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmwordi Structured version   Visualization version   GIF version

Theorem nnmwordi 8538
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmwordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem nnmwordi
StepHypRef Expression
1 nnmword 8536 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
21biimpd 228 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
32ex 413 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
4 nnord 7789 . . . . . 6 (𝐶 ∈ ω → Ord 𝐶)
5 ord0eln0 6357 . . . . . . 7 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
65necon2bbid 2984 . . . . . 6 (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
74, 6syl 17 . . . . 5 (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
873ad2ant3 1134 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
9 ssid 3954 . . . . . . 7 ∅ ⊆ ∅
10 nnm0r 8513 . . . . . . . . 9 (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
1110adantr 481 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) = ∅)
12 nnm0r 8513 . . . . . . . . 9 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
1312adantl 482 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐵) = ∅)
1411, 13sseq12d 3965 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅))
159, 14mpbiri 257 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))
16 oveq1 7345 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴))
17 oveq1 7345 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵))
1816, 17sseq12d 3965 . . . . . 6 (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)))
1915, 18syl5ibrcom 246 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
20193adant3 1131 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
218, 20sylbird 259 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
2221a1dd 50 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
233, 22pm2.61d 179 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wss 3898  c0 4270  Ord word 6302  (class class class)co 7338  ωcom 7781   ·o comu 8366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-om 7782  df-2nd 7901  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-oadd 8372  df-omul 8373
This theorem is referenced by:  nnmwordri  8539  omopthlem1  8561
  Copyright terms: Public domain W3C validator