MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmwordi Structured version   Visualization version   GIF version

Theorem nnmwordi 8691
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmwordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem nnmwordi
StepHypRef Expression
1 nnmword 8689 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
21biimpd 229 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
32ex 412 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
4 nnord 7911 . . . . . 6 (𝐶 ∈ ω → Ord 𝐶)
5 ord0eln0 6450 . . . . . . 7 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
65necon2bbid 2990 . . . . . 6 (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
74, 6syl 17 . . . . 5 (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
873ad2ant3 1135 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
9 ssid 4031 . . . . . . 7 ∅ ⊆ ∅
10 nnm0r 8666 . . . . . . . . 9 (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
1110adantr 480 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) = ∅)
12 nnm0r 8666 . . . . . . . . 9 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
1312adantl 481 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐵) = ∅)
1411, 13sseq12d 4042 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅))
159, 14mpbiri 258 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))
16 oveq1 7455 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴))
17 oveq1 7455 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵))
1816, 17sseq12d 4042 . . . . . 6 (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
20193adant3 1132 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
218, 20sylbird 260 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
2221a1dd 50 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
233, 22pm2.61d 179 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  c0 4352  Ord word 6394  (class class class)co 7448  ωcom 7903   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527
This theorem is referenced by:  nnmwordri  8692  omopthlem1  8715
  Copyright terms: Public domain W3C validator