MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmwordi Structured version   Visualization version   GIF version

Theorem nnmwordi 8553
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmwordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem nnmwordi
StepHypRef Expression
1 nnmword 8551 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
21biimpd 229 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
32ex 412 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
4 nnord 7807 . . . . . 6 (𝐶 ∈ ω → Ord 𝐶)
5 ord0eln0 6363 . . . . . . 7 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
65necon2bbid 2968 . . . . . 6 (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
74, 6syl 17 . . . . 5 (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
873ad2ant3 1135 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
9 ssid 3958 . . . . . . 7 ∅ ⊆ ∅
10 nnm0r 8528 . . . . . . . . 9 (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅)
1110adantr 480 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) = ∅)
12 nnm0r 8528 . . . . . . . . 9 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
1312adantl 481 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐵) = ∅)
1411, 13sseq12d 3969 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅))
159, 14mpbiri 258 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))
16 oveq1 7356 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴))
17 oveq1 7356 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵))
1816, 17sseq12d 3969 . . . . . 6 (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
20193adant3 1132 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
218, 20sylbird 260 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
2221a1dd 50 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))))
233, 22pm2.61d 179 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  c0 4284  Ord word 6306  (class class class)co 7349  ωcom 7799   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-omul 8393
This theorem is referenced by:  nnmwordri  8554  omopthlem1  8577
  Copyright terms: Public domain W3C validator