Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmwordi | Structured version Visualization version GIF version |
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnmwordi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmword 8536 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
3 | 2 | ex 413 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
4 | nnord 7789 | . . . . . 6 ⊢ (𝐶 ∈ ω → Ord 𝐶) | |
5 | ord0eln0 6357 | . . . . . . 7 ⊢ (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
6 | 5 | necon2bbid 2984 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
8 | 7 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
9 | ssid 3954 | . . . . . . 7 ⊢ ∅ ⊆ ∅ | |
10 | nnm0r 8513 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) | |
11 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) = ∅) |
12 | nnm0r 8513 | . . . . . . . . 9 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
13 | 12 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐵) = ∅) |
14 | 11, 13 | sseq12d 3965 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅)) |
15 | 9, 14 | mpbiri 257 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)) |
16 | oveq1 7345 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴)) | |
17 | oveq1 7345 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
18 | 16, 17 | sseq12d 3965 | . . . . . 6 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))) |
19 | 15, 18 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
20 | 19 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
21 | 8, 20 | sylbird 259 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
22 | 21 | a1dd 50 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
23 | 3, 22 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∅c0 4270 Ord word 6302 (class class class)co 7338 ωcom 7781 ·o comu 8366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-oadd 8372 df-omul 8373 |
This theorem is referenced by: nnmwordri 8539 omopthlem1 8561 |
Copyright terms: Public domain | W3C validator |