Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnmwordi | Structured version Visualization version GIF version |
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnmwordi | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnmword 8464 | . . . 4 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
3 | 2 | ex 413 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
4 | nnord 7720 | . . . . . 6 ⊢ (𝐶 ∈ ω → Ord 𝐶) | |
5 | ord0eln0 6320 | . . . . . . 7 ⊢ (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅)) | |
6 | 5 | necon2bbid 2987 | . . . . . 6 ⊢ (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
8 | 7 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶)) |
9 | ssid 3943 | . . . . . . 7 ⊢ ∅ ⊆ ∅ | |
10 | nnm0r 8441 | . . . . . . . . 9 ⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) | |
11 | 10 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) = ∅) |
12 | nnm0r 8441 | . . . . . . . . 9 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
13 | 12 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐵) = ∅) |
14 | 11, 13 | sseq12d 3954 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·o 𝐴) ⊆ (∅ ·o 𝐵) ↔ ∅ ⊆ ∅)) |
15 | 9, 14 | mpbiri 257 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵)) |
16 | oveq1 7282 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐴) = (∅ ·o 𝐴)) | |
17 | oveq1 7282 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵)) | |
18 | 16, 17 | sseq12d 3954 | . . . . . 6 ⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ (∅ ·o 𝐴) ⊆ (∅ ·o 𝐵))) |
19 | 15, 18 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
20 | 19 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
21 | 8, 20 | sylbird 259 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
22 | 21 | a1dd 50 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))) |
23 | 3, 22 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 Ord word 6265 (class class class)co 7275 ωcom 7712 ·o comu 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 |
This theorem is referenced by: nnmwordri 8467 omopthlem1 8489 |
Copyright terms: Public domain | W3C validator |