MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipeltop Structured version   Visualization version   GIF version

Theorem neipeltop 22188
Description: Lemma for neiptopreu 22192. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypothesis
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
Assertion
Ref Expression
neipeltop (𝐶𝐽 ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
Distinct variable groups:   𝑝,𝑎,𝐶   𝑁,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐽(𝑝,𝑎)   𝑁(𝑝)   𝑋(𝑝)

Proof of Theorem neipeltop
StepHypRef Expression
1 eleq1 2826 . . . 4 (𝑎 = 𝐶 → (𝑎 ∈ (𝑁𝑝) ↔ 𝐶 ∈ (𝑁𝑝)))
21raleqbi1dv 3331 . . 3 (𝑎 = 𝐶 → (∀𝑝𝑎 𝑎 ∈ (𝑁𝑝) ↔ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
3 neiptop.o . . 3 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
42, 3elrab2 3620 . 2 (𝐶𝐽 ↔ (𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
5 0ex 5226 . . . . . . 7 ∅ ∈ V
6 eleq1 2826 . . . . . . 7 (𝐶 = ∅ → (𝐶 ∈ V ↔ ∅ ∈ V))
75, 6mpbiri 257 . . . . . 6 (𝐶 = ∅ → 𝐶 ∈ V)
87adantl 481 . . . . 5 ((∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) ∧ 𝐶 = ∅) → 𝐶 ∈ V)
9 elex 3440 . . . . . . 7 (𝐶 ∈ (𝑁𝑝) → 𝐶 ∈ V)
109ralimi 3086 . . . . . 6 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → ∀𝑝𝐶 𝐶 ∈ V)
11 r19.3rzv 4426 . . . . . . 7 (𝐶 ≠ ∅ → (𝐶 ∈ V ↔ ∀𝑝𝐶 𝐶 ∈ V))
1211biimparc 479 . . . . . 6 ((∀𝑝𝐶 𝐶 ∈ V ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V)
1310, 12sylan 579 . . . . 5 ((∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V)
148, 13pm2.61dane 3031 . . . 4 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → 𝐶 ∈ V)
15 elpwg 4533 . . . 4 (𝐶 ∈ V → (𝐶 ∈ 𝒫 𝑋𝐶𝑋))
1614, 15syl 17 . . 3 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → (𝐶 ∈ 𝒫 𝑋𝐶𝑋))
1716pm5.32ri 575 . 2 ((𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)) ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
184, 17bitri 274 1 (𝐶𝐽 ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532
This theorem is referenced by:  neiptopuni  22189  neiptoptop  22190  neiptopnei  22191  neiptopreu  22192
  Copyright terms: Public domain W3C validator