MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neipeltop Structured version   Visualization version   GIF version

Theorem neipeltop 23044
Description: Lemma for neiptopreu 23048. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypothesis
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
Assertion
Ref Expression
neipeltop (𝐶𝐽 ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
Distinct variable groups:   𝑝,𝑎,𝐶   𝑁,𝑎   𝑋,𝑎
Allowed substitution hints:   𝐽(𝑝,𝑎)   𝑁(𝑝)   𝑋(𝑝)

Proof of Theorem neipeltop
StepHypRef Expression
1 eleq1 2819 . . . 4 (𝑎 = 𝐶 → (𝑎 ∈ (𝑁𝑝) ↔ 𝐶 ∈ (𝑁𝑝)))
21raleqbi1dv 3304 . . 3 (𝑎 = 𝐶 → (∀𝑝𝑎 𝑎 ∈ (𝑁𝑝) ↔ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
3 neiptop.o . . 3 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
42, 3elrab2 3645 . 2 (𝐶𝐽 ↔ (𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
5 0ex 5243 . . . . . . 7 ∅ ∈ V
6 eleq1 2819 . . . . . . 7 (𝐶 = ∅ → (𝐶 ∈ V ↔ ∅ ∈ V))
75, 6mpbiri 258 . . . . . 6 (𝐶 = ∅ → 𝐶 ∈ V)
87adantl 481 . . . . 5 ((∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) ∧ 𝐶 = ∅) → 𝐶 ∈ V)
9 elex 3457 . . . . . . 7 (𝐶 ∈ (𝑁𝑝) → 𝐶 ∈ V)
109ralimi 3069 . . . . . 6 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → ∀𝑝𝐶 𝐶 ∈ V)
11 r19.3rzv 4446 . . . . . . 7 (𝐶 ≠ ∅ → (𝐶 ∈ V ↔ ∀𝑝𝐶 𝐶 ∈ V))
1211biimparc 479 . . . . . 6 ((∀𝑝𝐶 𝐶 ∈ V ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V)
1310, 12sylan 580 . . . . 5 ((∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V)
148, 13pm2.61dane 3015 . . . 4 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → 𝐶 ∈ V)
15 elpwg 4550 . . . 4 (𝐶 ∈ V → (𝐶 ∈ 𝒫 𝑋𝐶𝑋))
1614, 15syl 17 . . 3 (∀𝑝𝐶 𝐶 ∈ (𝑁𝑝) → (𝐶 ∈ 𝒫 𝑋𝐶𝑋))
1716pm5.32ri 575 . 2 ((𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)) ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
184, 17bitri 275 1 (𝐶𝐽 ↔ (𝐶𝑋 ∧ ∀𝑝𝐶 𝐶 ∈ (𝑁𝑝)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-pw 4549
This theorem is referenced by:  neiptopuni  23045  neiptoptop  23046  neiptopnei  23047  neiptopreu  23048
  Copyright terms: Public domain W3C validator