![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neipeltop | Structured version Visualization version GIF version |
Description: Lemma for neiptopreu 21448. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
Ref | Expression |
---|---|
neiptop.o | ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
Ref | Expression |
---|---|
neipeltop | ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2853 | . . . 4 ⊢ (𝑎 = 𝐶 → (𝑎 ∈ (𝑁‘𝑝) ↔ 𝐶 ∈ (𝑁‘𝑝))) | |
2 | 1 | raleqbi1dv 3343 | . . 3 ⊢ (𝑎 = 𝐶 → (∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
3 | neiptop.o | . . 3 ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} | |
4 | 2, 3 | elrab2 3599 | . 2 ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
5 | 0ex 5069 | . . . . . . 7 ⊢ ∅ ∈ V | |
6 | eleq1 2853 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ∈ V ↔ ∅ ∈ V)) | |
7 | 5, 6 | mpbiri 250 | . . . . . 6 ⊢ (𝐶 = ∅ → 𝐶 ∈ V) |
8 | 7 | adantl 474 | . . . . 5 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) ∧ 𝐶 = ∅) → 𝐶 ∈ V) |
9 | elex 3433 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑁‘𝑝) → 𝐶 ∈ V) | |
10 | 9 | ralimi 3110 | . . . . . 6 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → ∀𝑝 ∈ 𝐶 𝐶 ∈ V) |
11 | r19.3rzv 4328 | . . . . . . 7 ⊢ (𝐶 ≠ ∅ → (𝐶 ∈ V ↔ ∀𝑝 ∈ 𝐶 𝐶 ∈ V)) | |
12 | 11 | biimparc 472 | . . . . . 6 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ V ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V) |
13 | 10, 12 | sylan 572 | . . . . 5 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V) |
14 | 8, 13 | pm2.61dane 3055 | . . . 4 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → 𝐶 ∈ V) |
15 | elpwg 4431 | . . . 4 ⊢ (𝐶 ∈ V → (𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → (𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋)) |
17 | 16 | pm5.32ri 568 | . 2 ⊢ ((𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝)) ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
18 | 4, 17 | bitri 267 | 1 ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 {crab 3092 Vcvv 3415 ⊆ wss 3831 ∅c0 4180 𝒫 cpw 4423 ‘cfv 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-nul 5068 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rab 3097 df-v 3417 df-dif 3834 df-in 3838 df-ss 3845 df-nul 4181 df-pw 4425 |
This theorem is referenced by: neiptopuni 21445 neiptoptop 21446 neiptopnei 21447 neiptopreu 21448 |
Copyright terms: Public domain | W3C validator |