Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neipeltop | Structured version Visualization version GIF version |
Description: Lemma for neiptopreu 22192. (Contributed by Thierry Arnoux, 6-Jan-2018.) |
Ref | Expression |
---|---|
neiptop.o | ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
Ref | Expression |
---|---|
neipeltop | ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝑎 = 𝐶 → (𝑎 ∈ (𝑁‘𝑝) ↔ 𝐶 ∈ (𝑁‘𝑝))) | |
2 | 1 | raleqbi1dv 3331 | . . 3 ⊢ (𝑎 = 𝐶 → (∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
3 | neiptop.o | . . 3 ⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} | |
4 | 2, 3 | elrab2 3620 | . 2 ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
5 | 0ex 5226 | . . . . . . 7 ⊢ ∅ ∈ V | |
6 | eleq1 2826 | . . . . . . 7 ⊢ (𝐶 = ∅ → (𝐶 ∈ V ↔ ∅ ∈ V)) | |
7 | 5, 6 | mpbiri 257 | . . . . . 6 ⊢ (𝐶 = ∅ → 𝐶 ∈ V) |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) ∧ 𝐶 = ∅) → 𝐶 ∈ V) |
9 | elex 3440 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑁‘𝑝) → 𝐶 ∈ V) | |
10 | 9 | ralimi 3086 | . . . . . 6 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → ∀𝑝 ∈ 𝐶 𝐶 ∈ V) |
11 | r19.3rzv 4426 | . . . . . . 7 ⊢ (𝐶 ≠ ∅ → (𝐶 ∈ V ↔ ∀𝑝 ∈ 𝐶 𝐶 ∈ V)) | |
12 | 11 | biimparc 479 | . . . . . 6 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ V ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V) |
13 | 10, 12 | sylan 579 | . . . . 5 ⊢ ((∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) ∧ 𝐶 ≠ ∅) → 𝐶 ∈ V) |
14 | 8, 13 | pm2.61dane 3031 | . . . 4 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → 𝐶 ∈ V) |
15 | elpwg 4533 | . . . 4 ⊢ (𝐶 ∈ V → (𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝) → (𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋)) |
17 | 16 | pm5.32ri 575 | . 2 ⊢ ((𝐶 ∈ 𝒫 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝)) ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
18 | 4, 17 | bitri 274 | 1 ⊢ (𝐶 ∈ 𝐽 ↔ (𝐶 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝐶 𝐶 ∈ (𝑁‘𝑝))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 |
This theorem is referenced by: neiptopuni 22189 neiptoptop 22190 neiptopnei 22191 neiptopreu 22192 |
Copyright terms: Public domain | W3C validator |