MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 21724
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 21701, innei 21716, elnei 21702 and neissex 21718, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 21716 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 8861 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopreu (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Distinct variable groups:   𝑝,𝑎,𝑁   𝑋,𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝   𝑁,𝑏   𝑋,𝑏   𝜑,𝑎,𝑏,𝑞,𝑝   𝑁,𝑝,𝑞   𝑋,𝑞   𝜑,𝑞   𝑗,𝑎,𝑏,𝐽,𝑝   𝑗,𝑞,𝑁   𝑗,𝑋   𝜑,𝑗
Allowed substitution hint:   𝐽(𝑞)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
2 neiptop.0 . . . . 5 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
4 neiptop.2 . . . . 5 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
5 neiptop.3 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
6 neiptop.4 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
7 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
81, 2, 3, 4, 5, 6, 7neiptoptop 21722 . . . 4 (𝜑𝐽 ∈ Top)
9 toptopon2 21509 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 220 . . 3 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 21721 . . . 4 (𝜑𝑋 = 𝐽)
1211fveq2d 6660 . . 3 (𝜑 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
1310, 12eleqtrrd 2916 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
141, 2, 3, 4, 5, 6, 7neiptopnei 21723 . 2 (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
15 nfv 1915 . . . . . . . . . 10 𝑝(𝜑𝑗 ∈ (TopOn‘𝑋))
16 nfmpt1 5150 . . . . . . . . . . 11 𝑝(𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1716nfeq2 2995 . . . . . . . . . 10 𝑝 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1815, 17nfan 1900 . . . . . . . . 9 𝑝((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
19 nfv 1915 . . . . . . . . 9 𝑝 𝑏𝑋
2018, 19nfan 1900 . . . . . . . 8 𝑝(((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋)
21 simpllr 774 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
22 simpr 487 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → 𝑏𝑋)
2322sselda 3955 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑝𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
25 fvexd 6671 . . . . . . . . . . . 12 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V)
2624, 25fvmpt2d 6767 . . . . . . . . . . 11 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2721, 23, 26syl2anc 586 . . . . . . . . . 10 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2827eqcomd 2827 . . . . . . . . 9 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁𝑝))
2928eleq2d 2898 . . . . . . . 8 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁𝑝)))
3020, 29ralbida 3230 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → (∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
3130pm5.32da 581 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
32 toponss 21518 . . . . . . . . 9 ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏𝑗) → 𝑏𝑋)
3332ad4ant24 752 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑋)
34 topontop 21504 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3534ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top)
36 opnnei 21711 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3837biimpa 479 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))
3933, 38jca 514 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4037biimpar 480 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏𝑗)
4140adantrl 714 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏𝑗)
4239, 41impbida 799 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))))
431neipeltop 21720 . . . . . . 7 (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
4443a1i 11 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
4531, 42, 443bitr4d 313 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗𝑏𝐽))
4645eqrdv 2819 . . . 4 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽)
4746ex 415 . . 3 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
4847ralrimiva 3182 . 2 (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
49 simpl 485 . . . . . . 7 ((𝑗 = 𝐽𝑝𝑋) → 𝑗 = 𝐽)
5049fveq2d 6660 . . . . . 6 ((𝑗 = 𝐽𝑝𝑋) → (nei‘𝑗) = (nei‘𝐽))
5150fveq1d 6658 . . . . 5 ((𝑗 = 𝐽𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝}))
5251mpteq2dva 5147 . . . 4 (𝑗 = 𝐽 → (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
5352eqeq2d 2832 . . 3 (𝑗 = 𝐽 → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝}))))
5453eqreu 3711 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
5513, 14, 48, 54syl3anc 1367 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  Vcvv 3486  wss 3924  𝒫 cpw 4525  {csn 4553   cuni 4824  cmpt 5132  wf 6337  cfv 6341  ficfi 8860  Topctop 21484  TopOnctopon 21501  neicnei 21688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-fin 8499  df-fi 8861  df-top 21485  df-topon 21502  df-ntr 21611  df-nei 21689
This theorem is referenced by:  ustuqtop  22838
  Copyright terms: Public domain W3C validator