MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 22637
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (π‘β€˜π‘ƒ) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 22614, innei 22629, elnei 22615 and neissex 22631, then there is a unique topology 𝑗 such that for any point 𝑝, (π‘β€˜π‘) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 22629 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9406 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
neiptop.0 (πœ‘ β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
neiptop.1 ((((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
neiptop.2 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
neiptop.3 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
neiptop.4 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
neiptop.5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
Assertion
Ref Expression
neiptopreu (πœ‘ β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
Distinct variable groups:   𝑝,π‘Ž,𝑁   𝑋,π‘Ž,𝑏,𝑝   𝐽,π‘Ž,𝑝   𝑋,𝑝   πœ‘,𝑝   𝑁,𝑏   𝑋,𝑏   πœ‘,π‘Ž,𝑏,π‘ž,𝑝   𝑁,𝑝,π‘ž   𝑋,π‘ž   πœ‘,π‘ž   𝑗,π‘Ž,𝑏,𝐽,𝑝   𝑗,π‘ž,𝑁   𝑗,𝑋   πœ‘,𝑗
Allowed substitution hint:   𝐽(π‘ž)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
2 neiptop.0 . . . . 5 (πœ‘ β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
4 neiptop.2 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
5 neiptop.3 . . . . 5 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
6 neiptop.4 . . . . 5 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
7 neiptop.5 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
81, 2, 3, 4, 5, 6, 7neiptoptop 22635 . . . 4 (πœ‘ β†’ 𝐽 ∈ Top)
9 toptopon2 22420 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
108, 9sylib 217 . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 22634 . . . 4 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
1211fveq2d 6896 . . 3 (πœ‘ β†’ (TopOnβ€˜π‘‹) = (TopOnβ€˜βˆͺ 𝐽))
1310, 12eleqtrrd 2837 . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
141, 2, 3, 4, 5, 6, 7neiptopnei 22636 . 2 (πœ‘ β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})))
15 nfv 1918 . . . . . . . . . 10 Ⅎ𝑝(πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹))
16 nfmpt1 5257 . . . . . . . . . . 11 Ⅎ𝑝(𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))
1716nfeq2 2921 . . . . . . . . . 10 Ⅎ𝑝 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))
1815, 17nfan 1903 . . . . . . . . 9 Ⅎ𝑝((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
19 nfv 1918 . . . . . . . . 9 Ⅎ𝑝 𝑏 βŠ† 𝑋
2018, 19nfan 1903 . . . . . . . 8 Ⅎ𝑝(((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋)
21 simpllr 775 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
22 simpr 486 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) β†’ 𝑏 βŠ† 𝑋)
2322sselda 3983 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ 𝑝 ∈ 𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
25 fvexd 6907 . . . . . . . . . . . 12 ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ∧ 𝑝 ∈ 𝑋) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) ∈ V)
2624, 25fvmpt2d 7012 . . . . . . . . . . 11 ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ∧ 𝑝 ∈ 𝑋) β†’ (π‘β€˜π‘) = ((neiβ€˜π‘—)β€˜{𝑝}))
2721, 23, 26syl2anc 585 . . . . . . . . . 10 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ (π‘β€˜π‘) = ((neiβ€˜π‘—)β€˜{𝑝}))
2827eqcomd 2739 . . . . . . . . 9 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) = (π‘β€˜π‘))
2928eleq2d 2820 . . . . . . . 8 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ (𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}) ↔ 𝑏 ∈ (π‘β€˜π‘)))
3020, 29ralbida 3268 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) β†’ (βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}) ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘)))
3130pm5.32da 580 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ ((𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})) ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘))))
32 toponss 22429 . . . . . . . . 9 ((𝑗 ∈ (TopOnβ€˜π‘‹) ∧ 𝑏 ∈ 𝑗) β†’ 𝑏 βŠ† 𝑋)
3332ad4ant24 753 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ 𝑏 βŠ† 𝑋)
34 topontop 22415 . . . . . . . . . . 11 (𝑗 ∈ (TopOnβ€˜π‘‹) β†’ 𝑗 ∈ Top)
3534ad2antlr 726 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑗 ∈ Top)
36 opnnei 22624 . . . . . . . . . 10 (𝑗 ∈ Top β†’ (𝑏 ∈ 𝑗 ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
3837biimpa 478 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))
3933, 38jca 513 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
4037biimpar 479 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑏 ∈ 𝑗)
4140adantrl 715 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑏 ∈ 𝑗)
4239, 41impbida 800 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))))
431neipeltop 22633 . . . . . . 7 (𝑏 ∈ 𝐽 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘)))
4443a1i 11 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝐽 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘))))
4531, 42, 443bitr4d 311 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽))
4645eqrdv 2731 . . . 4 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑗 = 𝐽)
4746ex 414 . . 3 ((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽))
4847ralrimiva 3147 . 2 (πœ‘ β†’ βˆ€π‘— ∈ (TopOnβ€˜π‘‹)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽))
49 simpl 484 . . . . . . 7 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ 𝑗 = 𝐽)
5049fveq2d 6896 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ (neiβ€˜π‘—) = (neiβ€˜π½))
5150fveq1d 6894 . . . . 5 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) = ((neiβ€˜π½)β€˜{𝑝}))
5251mpteq2dva 5249 . . . 4 (𝑗 = 𝐽 β†’ (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})))
5352eqeq2d 2744 . . 3 (𝑗 = 𝐽 β†’ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ↔ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝}))))
5453eqreu 3726 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})) ∧ βˆ€π‘— ∈ (TopOnβ€˜π‘‹)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽)) β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
5513, 14, 48, 54syl3anc 1372 1 (πœ‘ β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  βˆƒ!wreu 3375  {crab 3433  Vcvv 3475   βŠ† wss 3949  π’« cpw 4603  {csn 4629  βˆͺ cuni 4909   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  ficfi 9405  Topctop 22395  TopOnctopon 22412  neicnei 22601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-en 8940  df-fin 8943  df-fi 9406  df-top 22396  df-topon 22413  df-ntr 22524  df-nei 22602
This theorem is referenced by:  ustuqtop  23751
  Copyright terms: Public domain W3C validator