MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 23048
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 23025, innei 23040, elnei 23026 and neissex 23042, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 23040 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9295 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopreu (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Distinct variable groups:   𝑝,𝑎,𝑁   𝑋,𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝   𝑁,𝑏   𝑋,𝑏   𝜑,𝑎,𝑏,𝑞,𝑝   𝑁,𝑝,𝑞   𝑋,𝑞   𝜑,𝑞   𝑗,𝑎,𝑏,𝐽,𝑝   𝑗,𝑞,𝑁   𝑗,𝑋   𝜑,𝑗
Allowed substitution hint:   𝐽(𝑞)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
2 neiptop.0 . . . . 5 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
4 neiptop.2 . . . . 5 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
5 neiptop.3 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
6 neiptop.4 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
7 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
81, 2, 3, 4, 5, 6, 7neiptoptop 23046 . . . 4 (𝜑𝐽 ∈ Top)
9 toptopon2 22833 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 23045 . . . 4 (𝜑𝑋 = 𝐽)
1211fveq2d 6826 . . 3 (𝜑 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
1310, 12eleqtrrd 2834 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
141, 2, 3, 4, 5, 6, 7neiptopnei 23047 . 2 (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
15 nfv 1915 . . . . . . . . . 10 𝑝(𝜑𝑗 ∈ (TopOn‘𝑋))
16 nfmpt1 5188 . . . . . . . . . . 11 𝑝(𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1716nfeq2 2912 . . . . . . . . . 10 𝑝 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1815, 17nfan 1900 . . . . . . . . 9 𝑝((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
19 nfv 1915 . . . . . . . . 9 𝑝 𝑏𝑋
2018, 19nfan 1900 . . . . . . . 8 𝑝(((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋)
21 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → 𝑏𝑋)
2322sselda 3929 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑝𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
25 fvexd 6837 . . . . . . . . . . . 12 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V)
2624, 25fvmpt2d 6942 . . . . . . . . . . 11 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2721, 23, 26syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2827eqcomd 2737 . . . . . . . . 9 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁𝑝))
2928eleq2d 2817 . . . . . . . 8 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁𝑝)))
3020, 29ralbida 3243 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → (∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
3130pm5.32da 579 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
32 toponss 22842 . . . . . . . . 9 ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏𝑗) → 𝑏𝑋)
3332ad4ant24 754 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑋)
34 topontop 22828 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3534ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top)
36 opnnei 23035 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3837biimpa 476 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))
3933, 38jca 511 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4037biimpar 477 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏𝑗)
4140adantrl 716 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏𝑗)
4239, 41impbida 800 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))))
431neipeltop 23044 . . . . . . 7 (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
4443a1i 11 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
4531, 42, 443bitr4d 311 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗𝑏𝐽))
4645eqrdv 2729 . . . 4 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽)
4746ex 412 . . 3 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
4847ralrimiva 3124 . 2 (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
49 simpl 482 . . . . . . 7 ((𝑗 = 𝐽𝑝𝑋) → 𝑗 = 𝐽)
5049fveq2d 6826 . . . . . 6 ((𝑗 = 𝐽𝑝𝑋) → (nei‘𝑗) = (nei‘𝐽))
5150fveq1d 6824 . . . . 5 ((𝑗 = 𝐽𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝}))
5251mpteq2dva 5182 . . . 4 (𝑗 = 𝐽 → (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
5352eqeq2d 2742 . . 3 (𝑗 = 𝐽 → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝}))))
5453eqreu 3683 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
5513, 14, 48, 54syl3anc 1373 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856  cmpt 5170  wf 6477  cfv 6481  ficfi 9294  Topctop 22808  TopOnctopon 22825  neicnei 23012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295  df-top 22809  df-topon 22826  df-ntr 22935  df-nei 23013
This theorem is referenced by:  ustuqtop  24161
  Copyright terms: Public domain W3C validator