MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 22628
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (π‘β€˜π‘ƒ) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 22605, innei 22620, elnei 22606 and neissex 22622, then there is a unique topology 𝑗 such that for any point 𝑝, (π‘β€˜π‘) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 22620 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9402 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
neiptop.0 (πœ‘ β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
neiptop.1 ((((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
neiptop.2 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
neiptop.3 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
neiptop.4 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
neiptop.5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
Assertion
Ref Expression
neiptopreu (πœ‘ β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
Distinct variable groups:   𝑝,π‘Ž,𝑁   𝑋,π‘Ž,𝑏,𝑝   𝐽,π‘Ž,𝑝   𝑋,𝑝   πœ‘,𝑝   𝑁,𝑏   𝑋,𝑏   πœ‘,π‘Ž,𝑏,π‘ž,𝑝   𝑁,𝑝,π‘ž   𝑋,π‘ž   πœ‘,π‘ž   𝑗,π‘Ž,𝑏,𝐽,𝑝   𝑗,π‘ž,𝑁   𝑗,𝑋   πœ‘,𝑗
Allowed substitution hint:   𝐽(π‘ž)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ (π‘β€˜π‘)}
2 neiptop.0 . . . . 5 (πœ‘ β†’ 𝑁:π‘‹βŸΆπ’« 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž βŠ† 𝑏 ∧ 𝑏 βŠ† 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑏 ∈ (π‘β€˜π‘))
4 neiptop.2 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ (fiβ€˜(π‘β€˜π‘)) βŠ† (π‘β€˜π‘))
5 neiptop.3 . . . . 5 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
6 neiptop.4 . . . . 5 (((πœ‘ ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘ ∈ (π‘β€˜π‘)βˆ€π‘ž ∈ 𝑏 π‘Ž ∈ (π‘β€˜π‘ž))
7 neiptop.5 . . . . 5 ((πœ‘ ∧ 𝑝 ∈ 𝑋) β†’ 𝑋 ∈ (π‘β€˜π‘))
81, 2, 3, 4, 5, 6, 7neiptoptop 22626 . . . 4 (πœ‘ β†’ 𝐽 ∈ Top)
9 toptopon2 22411 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
108, 9sylib 217 . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 22625 . . . 4 (πœ‘ β†’ 𝑋 = βˆͺ 𝐽)
1211fveq2d 6892 . . 3 (πœ‘ β†’ (TopOnβ€˜π‘‹) = (TopOnβ€˜βˆͺ 𝐽))
1310, 12eleqtrrd 2836 . 2 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
141, 2, 3, 4, 5, 6, 7neiptopnei 22627 . 2 (πœ‘ β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})))
15 nfv 1917 . . . . . . . . . 10 Ⅎ𝑝(πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹))
16 nfmpt1 5255 . . . . . . . . . . 11 Ⅎ𝑝(𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))
1716nfeq2 2920 . . . . . . . . . 10 Ⅎ𝑝 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))
1815, 17nfan 1902 . . . . . . . . 9 Ⅎ𝑝((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
19 nfv 1917 . . . . . . . . 9 Ⅎ𝑝 𝑏 βŠ† 𝑋
2018, 19nfan 1902 . . . . . . . 8 Ⅎ𝑝(((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋)
21 simpllr 774 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
22 simpr 485 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) β†’ 𝑏 βŠ† 𝑋)
2322sselda 3981 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ 𝑝 ∈ 𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
25 fvexd 6903 . . . . . . . . . . . 12 ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ∧ 𝑝 ∈ 𝑋) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) ∈ V)
2624, 25fvmpt2d 7008 . . . . . . . . . . 11 ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ∧ 𝑝 ∈ 𝑋) β†’ (π‘β€˜π‘) = ((neiβ€˜π‘—)β€˜{𝑝}))
2721, 23, 26syl2anc 584 . . . . . . . . . 10 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ (π‘β€˜π‘) = ((neiβ€˜π‘—)β€˜{𝑝}))
2827eqcomd 2738 . . . . . . . . 9 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) = (π‘β€˜π‘))
2928eleq2d 2819 . . . . . . . 8 (((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) ∧ 𝑝 ∈ 𝑏) β†’ (𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}) ↔ 𝑏 ∈ (π‘β€˜π‘)))
3020, 29ralbida 3267 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 βŠ† 𝑋) β†’ (βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}) ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘)))
3130pm5.32da 579 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ ((𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})) ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘))))
32 toponss 22420 . . . . . . . . 9 ((𝑗 ∈ (TopOnβ€˜π‘‹) ∧ 𝑏 ∈ 𝑗) β†’ 𝑏 βŠ† 𝑋)
3332ad4ant24 752 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ 𝑏 βŠ† 𝑋)
34 topontop 22406 . . . . . . . . . . 11 (𝑗 ∈ (TopOnβ€˜π‘‹) β†’ 𝑗 ∈ Top)
3534ad2antlr 725 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑗 ∈ Top)
36 opnnei 22615 . . . . . . . . . 10 (𝑗 ∈ Top β†’ (𝑏 ∈ 𝑗 ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
3837biimpa 477 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))
3933, 38jca 512 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ 𝑏 ∈ 𝑗) β†’ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})))
4037biimpar 478 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑏 ∈ 𝑗)
4140adantrl 714 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) ∧ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑏 ∈ 𝑗)
4239, 41impbida 799 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((neiβ€˜π‘—)β€˜{𝑝}))))
431neipeltop 22624 . . . . . . 7 (𝑏 ∈ 𝐽 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘)))
4443a1i 11 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝐽 ↔ (𝑏 βŠ† 𝑋 ∧ βˆ€π‘ ∈ 𝑏 𝑏 ∈ (π‘β€˜π‘))))
4531, 42, 443bitr4d 310 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ (𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽))
4645eqrdv 2730 . . . 4 (((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝}))) β†’ 𝑗 = 𝐽)
4746ex 413 . . 3 ((πœ‘ ∧ 𝑗 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽))
4847ralrimiva 3146 . 2 (πœ‘ β†’ βˆ€π‘— ∈ (TopOnβ€˜π‘‹)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽))
49 simpl 483 . . . . . . 7 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ 𝑗 = 𝐽)
5049fveq2d 6892 . . . . . 6 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ (neiβ€˜π‘—) = (neiβ€˜π½))
5150fveq1d 6890 . . . . 5 ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) β†’ ((neiβ€˜π‘—)β€˜{𝑝}) = ((neiβ€˜π½)β€˜{𝑝}))
5251mpteq2dva 5247 . . . 4 (𝑗 = 𝐽 β†’ (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})))
5352eqeq2d 2743 . . 3 (𝑗 = 𝐽 β†’ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) ↔ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝}))))
5453eqreu 3724 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π½)β€˜{𝑝})) ∧ βˆ€π‘— ∈ (TopOnβ€˜π‘‹)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})) β†’ 𝑗 = 𝐽)) β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
5513, 14, 48, 54syl3anc 1371 1 (πœ‘ β†’ βˆƒ!𝑗 ∈ (TopOnβ€˜π‘‹)𝑁 = (𝑝 ∈ 𝑋 ↦ ((neiβ€˜π‘—)β€˜{𝑝})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374  {crab 3432  Vcvv 3474   βŠ† wss 3947  π’« cpw 4601  {csn 4627  βˆͺ cuni 4907   ↦ cmpt 5230  βŸΆwf 6536  β€˜cfv 6540  ficfi 9401  Topctop 22386  TopOnctopon 22403  neicnei 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-fin 8939  df-fi 9402  df-top 22387  df-topon 22404  df-ntr 22515  df-nei 22593
This theorem is referenced by:  ustuqtop  23742
  Copyright terms: Public domain W3C validator