MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 22192
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 22169, innei 22184, elnei 22170 and neissex 22186, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 22184 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9100 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopreu (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Distinct variable groups:   𝑝,𝑎,𝑁   𝑋,𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝   𝑁,𝑏   𝑋,𝑏   𝜑,𝑎,𝑏,𝑞,𝑝   𝑁,𝑝,𝑞   𝑋,𝑞   𝜑,𝑞   𝑗,𝑎,𝑏,𝐽,𝑝   𝑗,𝑞,𝑁   𝑗,𝑋   𝜑,𝑗
Allowed substitution hint:   𝐽(𝑞)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
2 neiptop.0 . . . . 5 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
4 neiptop.2 . . . . 5 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
5 neiptop.3 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
6 neiptop.4 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
7 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
81, 2, 3, 4, 5, 6, 7neiptoptop 22190 . . . 4 (𝜑𝐽 ∈ Top)
9 toptopon2 21975 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 217 . . 3 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 22189 . . . 4 (𝜑𝑋 = 𝐽)
1211fveq2d 6760 . . 3 (𝜑 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
1310, 12eleqtrrd 2842 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
141, 2, 3, 4, 5, 6, 7neiptopnei 22191 . 2 (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
15 nfv 1918 . . . . . . . . . 10 𝑝(𝜑𝑗 ∈ (TopOn‘𝑋))
16 nfmpt1 5178 . . . . . . . . . . 11 𝑝(𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1716nfeq2 2923 . . . . . . . . . 10 𝑝 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1815, 17nfan 1903 . . . . . . . . 9 𝑝((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
19 nfv 1918 . . . . . . . . 9 𝑝 𝑏𝑋
2018, 19nfan 1903 . . . . . . . 8 𝑝(((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋)
21 simpllr 772 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → 𝑏𝑋)
2322sselda 3917 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑝𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
25 fvexd 6771 . . . . . . . . . . . 12 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V)
2624, 25fvmpt2d 6870 . . . . . . . . . . 11 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2721, 23, 26syl2anc 583 . . . . . . . . . 10 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2827eqcomd 2744 . . . . . . . . 9 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁𝑝))
2928eleq2d 2824 . . . . . . . 8 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁𝑝)))
3020, 29ralbida 3156 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → (∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
3130pm5.32da 578 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
32 toponss 21984 . . . . . . . . 9 ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏𝑗) → 𝑏𝑋)
3332ad4ant24 750 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑋)
34 topontop 21970 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3534ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top)
36 opnnei 22179 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3837biimpa 476 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))
3933, 38jca 511 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4037biimpar 477 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏𝑗)
4140adantrl 712 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏𝑗)
4239, 41impbida 797 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))))
431neipeltop 22188 . . . . . . 7 (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
4443a1i 11 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
4531, 42, 443bitr4d 310 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗𝑏𝐽))
4645eqrdv 2736 . . . 4 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽)
4746ex 412 . . 3 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
4847ralrimiva 3107 . 2 (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
49 simpl 482 . . . . . . 7 ((𝑗 = 𝐽𝑝𝑋) → 𝑗 = 𝐽)
5049fveq2d 6760 . . . . . 6 ((𝑗 = 𝐽𝑝𝑋) → (nei‘𝑗) = (nei‘𝐽))
5150fveq1d 6758 . . . . 5 ((𝑗 = 𝐽𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝}))
5251mpteq2dva 5170 . . . 4 (𝑗 = 𝐽 → (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
5352eqeq2d 2749 . . 3 (𝑗 = 𝐽 → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝}))))
5453eqreu 3659 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
5513, 14, 48, 54syl3anc 1369 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836  cmpt 5153  wf 6414  cfv 6418  ficfi 9099  Topctop 21950  TopOnctopon 21967  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-fi 9100  df-top 21951  df-topon 21968  df-ntr 22079  df-nei 22157
This theorem is referenced by:  ustuqtop  23306
  Copyright terms: Public domain W3C validator