Proof of Theorem neiptopreu
Step | Hyp | Ref
| Expression |
1 | | neiptop.o |
. . . . 5
⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
2 | | neiptop.0 |
. . . . 5
⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
3 | | neiptop.1 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
4 | | neiptop.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
5 | | neiptop.3 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
6 | | neiptop.4 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
7 | | neiptop.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
8 | 1, 2, 3, 4, 5, 6, 7 | neiptoptop 22280 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
9 | | toptopon2 22065 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | 8, 9 | sylib 217 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 1, 2, 3, 4, 5, 6, 7 | neiptopuni 22279 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
12 | 11 | fveq2d 6775 |
. . 3
⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ 𝐽)) |
13 | 10, 12 | eleqtrrd 2844 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
14 | 1, 2, 3, 4, 5, 6, 7 | neiptopnei 22281 |
. 2
⊢ (𝜑 → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
15 | | nfv 1921 |
. . . . . . . . . 10
⊢
Ⅎ𝑝(𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) |
16 | | nfmpt1 5187 |
. . . . . . . . . . 11
⊢
Ⅎ𝑝(𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
17 | 16 | nfeq2 2926 |
. . . . . . . . . 10
⊢
Ⅎ𝑝 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
18 | 15, 17 | nfan 1906 |
. . . . . . . . 9
⊢
Ⅎ𝑝((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
19 | | nfv 1921 |
. . . . . . . . 9
⊢
Ⅎ𝑝 𝑏 ⊆ 𝑋 |
20 | 18, 19 | nfan 1906 |
. . . . . . . 8
⊢
Ⅎ𝑝(((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) |
21 | | simpllr 773 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
22 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → 𝑏 ⊆ 𝑋) |
23 | 22 | sselda 3926 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑝 ∈ 𝑋) |
24 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
25 | | fvexd 6786 |
. . . . . . . . . . . 12
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V) |
26 | 24, 25 | fvmpt2d 6885 |
. . . . . . . . . . 11
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
27 | 21, 23, 26 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
28 | 27 | eqcomd 2746 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁‘𝑝)) |
29 | 28 | eleq2d 2826 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁‘𝑝))) |
30 | 20, 29 | ralbida 3159 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
31 | 30 | pm5.32da 579 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
32 | | toponss 22074 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
33 | 32 | ad4ant24 751 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
34 | | topontop 22060 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top) |
35 | 34 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top) |
36 | | opnnei 22269 |
. . . . . . . . . 10
⊢ (𝑗 ∈ Top → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
38 | 37 | biimpa 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) |
39 | 33, 38 | jca 512 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
40 | 37 | biimpar 478 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏 ∈ 𝑗) |
41 | 40 | adantrl 713 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏 ∈ 𝑗) |
42 | 39, 41 | impbida 798 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))) |
43 | 1 | neipeltop 22278 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
45 | 31, 42, 44 | 3bitr4d 311 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽)) |
46 | 45 | eqrdv 2738 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽) |
47 | 46 | ex 413 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
48 | 47 | ralrimiva 3110 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
49 | | simpl 483 |
. . . . . . 7
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → 𝑗 = 𝐽) |
50 | 49 | fveq2d 6775 |
. . . . . 6
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → (nei‘𝑗) = (nei‘𝐽)) |
51 | 50 | fveq1d 6773 |
. . . . 5
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝})) |
52 | 51 | mpteq2dva 5179 |
. . . 4
⊢ (𝑗 = 𝐽 → (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
53 | 52 | eqeq2d 2751 |
. . 3
⊢ (𝑗 = 𝐽 → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})))) |
54 | 53 | eqreu 3668 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
55 | 13, 14, 48, 54 | syl3anc 1370 |
1
⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |