MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptopreu Structured version   Visualization version   GIF version

Theorem neiptopreu 23162
Description: If, to each element 𝑃 of a set 𝑋, we associate a set (𝑁𝑃) fulfilling Properties Vi, Vii, Viii and Property Viv of [BourbakiTop1] p. I.2. , corresponding to ssnei 23139, innei 23154, elnei 23140 and neissex 23156, then there is a unique topology 𝑗 such that for any point 𝑝, (𝑁𝑝) is the set of neighborhoods of 𝑝. Proposition 2 of [BourbakiTop1] p. I.3. This can be used to build a topology from a set of neighborhoods. Note that innei 23154 uses binary intersections whereas Property Vii mentions finite intersections (which includes the empty intersection of subsets of 𝑋, which is equal to 𝑋), so we add the hypothesis that 𝑋 is a neighborhood of all points. TODO: when df-fi 9480 includes the empty intersection, remove that extra hypothesis. (Contributed by Thierry Arnoux, 6-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
neiptop.0 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
neiptop.1 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
neiptop.2 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
neiptop.3 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
neiptop.4 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
neiptop.5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Assertion
Ref Expression
neiptopreu (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Distinct variable groups:   𝑝,𝑎,𝑁   𝑋,𝑎,𝑏,𝑝   𝐽,𝑎,𝑝   𝑋,𝑝   𝜑,𝑝   𝑁,𝑏   𝑋,𝑏   𝜑,𝑎,𝑏,𝑞,𝑝   𝑁,𝑝,𝑞   𝑋,𝑞   𝜑,𝑞   𝑗,𝑎,𝑏,𝐽,𝑝   𝑗,𝑞,𝑁   𝑗,𝑋   𝜑,𝑗
Allowed substitution hint:   𝐽(𝑞)

Proof of Theorem neiptopreu
StepHypRef Expression
1 neiptop.o . . . . 5 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
2 neiptop.0 . . . . 5 (𝜑𝑁:𝑋⟶𝒫 𝒫 𝑋)
3 neiptop.1 . . . . 5 ((((𝜑𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
4 neiptop.2 . . . . 5 ((𝜑𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
5 neiptop.3 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
6 neiptop.4 . . . . 5 (((𝜑𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
7 neiptop.5 . . . . 5 ((𝜑𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
81, 2, 3, 4, 5, 6, 7neiptoptop 23160 . . . 4 (𝜑𝐽 ∈ Top)
9 toptopon2 22945 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
111, 2, 3, 4, 5, 6, 7neiptopuni 23159 . . . 4 (𝜑𝑋 = 𝐽)
1211fveq2d 6924 . . 3 (𝜑 → (TopOn‘𝑋) = (TopOn‘ 𝐽))
1310, 12eleqtrrd 2847 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
141, 2, 3, 4, 5, 6, 7neiptopnei 23161 . 2 (𝜑𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
15 nfv 1913 . . . . . . . . . 10 𝑝(𝜑𝑗 ∈ (TopOn‘𝑋))
16 nfmpt1 5274 . . . . . . . . . . 11 𝑝(𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1716nfeq2 2926 . . . . . . . . . 10 𝑝 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))
1815, 17nfan 1898 . . . . . . . . 9 𝑝((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
19 nfv 1913 . . . . . . . . 9 𝑝 𝑏𝑋
2018, 19nfan 1898 . . . . . . . 8 𝑝(((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋)
21 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → 𝑏𝑋)
2322sselda 4008 . . . . . . . . . . 11 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → 𝑝𝑋)
24 id 22 . . . . . . . . . . . 12 (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
25 fvexd 6935 . . . . . . . . . . . 12 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V)
2624, 25fvmpt2d 7042 . . . . . . . . . . 11 ((𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝𝑋) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2721, 23, 26syl2anc 583 . . . . . . . . . 10 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2827eqcomd 2746 . . . . . . . . 9 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁𝑝))
2928eleq2d 2830 . . . . . . . 8 (((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) ∧ 𝑝𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁𝑝)))
3020, 29ralbida 3276 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑋) → (∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
3130pm5.32da 578 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
32 toponss 22954 . . . . . . . . 9 ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏𝑗) → 𝑏𝑋)
3332ad4ant24 753 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → 𝑏𝑋)
34 topontop 22940 . . . . . . . . . . 11 (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top)
3534ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top)
36 opnnei 23149 . . . . . . . . . 10 (𝑗 ∈ Top → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3735, 36syl 17 . . . . . . . . 9 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
3837biimpa 476 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))
3933, 38jca 511 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏𝑗) → (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))
4037biimpar 477 . . . . . . . 8 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏𝑗)
4140adantrl 715 . . . . . . 7 ((((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏𝑗)
4239, 41impbida 800 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))))
431neipeltop 23158 . . . . . . 7 (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝)))
4443a1i 11 . . . . . 6 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝐽 ↔ (𝑏𝑋 ∧ ∀𝑝𝑏 𝑏 ∈ (𝑁𝑝))))
4531, 42, 443bitr4d 311 . . . . 5 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏𝑗𝑏𝐽))
4645eqrdv 2738 . . . 4 (((𝜑𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽)
4746ex 412 . . 3 ((𝜑𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
4847ralrimiva 3152 . 2 (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽))
49 simpl 482 . . . . . . 7 ((𝑗 = 𝐽𝑝𝑋) → 𝑗 = 𝐽)
5049fveq2d 6924 . . . . . 6 ((𝑗 = 𝐽𝑝𝑋) → (nei‘𝑗) = (nei‘𝐽))
5150fveq1d 6922 . . . . 5 ((𝑗 = 𝐽𝑝𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝}))
5251mpteq2dva 5266 . . . 4 (𝑗 = 𝐽 → (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})))
5352eqeq2d 2751 . . 3 (𝑗 = 𝐽 → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝}))))
5453eqreu 3751 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
5513, 14, 48, 54syl3anc 1371 1 (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  wf 6569  cfv 6573  ficfi 9479  Topctop 22920  TopOnctopon 22937  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-fin 9007  df-fi 9480  df-top 22921  df-topon 22938  df-ntr 23049  df-nei 23127
This theorem is referenced by:  ustuqtop  24276
  Copyright terms: Public domain W3C validator