Proof of Theorem neiptopreu
Step | Hyp | Ref
| Expression |
1 | | neiptop.o |
. . . . 5
⊢ 𝐽 = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
2 | | neiptop.0 |
. . . . 5
⊢ (𝜑 → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
3 | | neiptop.1 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
4 | | neiptop.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
5 | | neiptop.3 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
6 | | neiptop.4 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
7 | | neiptop.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
8 | 1, 2, 3, 4, 5, 6, 7 | neiptoptop 21343 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) |
9 | | eqid 2777 |
. . . . 5
⊢ ∪ 𝐽 =
∪ 𝐽 |
10 | 9 | toptopon 21129 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | 8, 10 | sylib 210 |
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | 1, 2, 3, 4, 5, 6, 7 | neiptopuni 21342 |
. . . 4
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
13 | 12 | fveq2d 6450 |
. . 3
⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ 𝐽)) |
14 | 11, 13 | eleqtrrd 2861 |
. 2
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
15 | 1, 2, 3, 4, 5, 6, 7 | neiptopnei 21344 |
. 2
⊢ (𝜑 → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
16 | | nfv 1957 |
. . . . . . . . . 10
⊢
Ⅎ𝑝(𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) |
17 | | nfmpt1 4982 |
. . . . . . . . . . 11
⊢
Ⅎ𝑝(𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
18 | 17 | nfeq2 2948 |
. . . . . . . . . 10
⊢
Ⅎ𝑝 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) |
19 | 16, 18 | nfan 1946 |
. . . . . . . . 9
⊢
Ⅎ𝑝((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
20 | | nfv 1957 |
. . . . . . . . 9
⊢
Ⅎ𝑝 𝑏 ⊆ 𝑋 |
21 | 19, 20 | nfan 1946 |
. . . . . . . 8
⊢
Ⅎ𝑝(((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) |
22 | | simpllr 766 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
23 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → 𝑏 ⊆ 𝑋) |
24 | 23 | sselda 3820 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → 𝑝 ∈ 𝑋) |
25 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
26 | | fvexd 6461 |
. . . . . . . . . . . 12
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) ∈ V) |
27 | 25, 26 | fvmpt2d 6554 |
. . . . . . . . . . 11
⊢ ((𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ∧ 𝑝 ∈ 𝑋) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
28 | 22, 24, 27 | syl2anc 579 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
29 | 28 | eqcomd 2783 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → ((nei‘𝑗)‘{𝑝}) = (𝑁‘𝑝)) |
30 | 29 | eleq2d 2844 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) ∧ 𝑝 ∈ 𝑏) → (𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ 𝑏 ∈ (𝑁‘𝑝))) |
31 | 21, 30 | ralbida 3163 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ⊆ 𝑋) → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
32 | 31 | pm5.32da 574 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → ((𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
33 | | simpllr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑗 ∈ (TopOn‘𝑋)) |
34 | | simpr 479 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑏 ∈ 𝑗) |
35 | | toponss 21139 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (TopOn‘𝑋) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
36 | 33, 34, 35 | syl2anc 579 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → 𝑏 ⊆ 𝑋) |
37 | | topontop 21125 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (TopOn‘𝑋) → 𝑗 ∈ Top) |
38 | 37 | ad2antlr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 ∈ Top) |
39 | | opnnei 21332 |
. . . . . . . . . 10
⊢ (𝑗 ∈ Top → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
40 | 38, 39 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
41 | 40 | biimpa 470 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) |
42 | 36, 41 | jca 507 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ 𝑏 ∈ 𝑗) → (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) |
43 | 40 | biimpar 471 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})) → 𝑏 ∈ 𝑗) |
44 | 43 | adantrl 706 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) ∧ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝}))) → 𝑏 ∈ 𝑗) |
45 | 42, 44 | impbida 791 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((nei‘𝑗)‘{𝑝})))) |
46 | 1 | neipeltop 21341 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝))) |
47 | 46 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝐽 ↔ (𝑏 ⊆ 𝑋 ∧ ∀𝑝 ∈ 𝑏 𝑏 ∈ (𝑁‘𝑝)))) |
48 | 32, 45, 47 | 3bitr4d 303 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → (𝑏 ∈ 𝑗 ↔ 𝑏 ∈ 𝐽)) |
49 | 48 | eqrdv 2775 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) → 𝑗 = 𝐽) |
50 | 49 | ex 403 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (TopOn‘𝑋)) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
51 | 50 | ralrimiva 3147 |
. 2
⊢ (𝜑 → ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) |
52 | | simpl 476 |
. . . . . . 7
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → 𝑗 = 𝐽) |
53 | 52 | fveq2d 6450 |
. . . . . 6
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → (nei‘𝑗) = (nei‘𝐽)) |
54 | 53 | fveq1d 6448 |
. . . . 5
⊢ ((𝑗 = 𝐽 ∧ 𝑝 ∈ 𝑋) → ((nei‘𝑗)‘{𝑝}) = ((nei‘𝐽)‘{𝑝})) |
55 | 54 | mpteq2dva 4979 |
. . . 4
⊢ (𝑗 = 𝐽 → (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝}))) |
56 | 55 | eqeq2d 2787 |
. . 3
⊢ (𝑗 = 𝐽 → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})))) |
57 | 56 | eqreu 3609 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝐽)‘{𝑝})) ∧ ∀𝑗 ∈ (TopOn‘𝑋)(𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) → 𝑗 = 𝐽)) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
58 | 14, 15, 51, 57 | syl3anc 1439 |
1
⊢ (𝜑 → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |