MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresss Structured version   Visualization version   GIF version

Theorem rnresss 5972
Description: The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
rnresss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rnresss
StepHypRef Expression
1 resss 5956 . 2 (𝐴𝐵) ⊆ 𝐴
21rnssi 5886 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3905  ran crn 5624  cres 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635
This theorem is referenced by:  imadifssran  6104  onsiso  28193  gsumhashmul  33033  nelrnres  45185  limsupvaluz2  45739  supcnvlimsup  45741  limsupgtlem  45778  sge0split  46410
  Copyright terms: Public domain W3C validator