![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnresss | Structured version Visualization version GIF version |
Description: The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnresss | ⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 6022 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | 1 | rnssi 5954 | 1 ⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 ran crn 5690 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 |
This theorem is referenced by: gsumhashmul 33047 nelrnres 45130 limsupvaluz2 45694 supcnvlimsup 45696 limsupgtlem 45733 sge0split 46365 |
Copyright terms: Public domain | W3C validator |