Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnresss | Structured version Visualization version GIF version |
Description: The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
rnresss | ⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resss 5905 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
2 | 1 | rnssi 5838 | 1 ⊢ ran (𝐴 ↾ 𝐵) ⊆ ran 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ran crn 5581 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 |
This theorem is referenced by: gsumhashmul 31218 nelrnres 42614 limsupvaluz2 43169 supcnvlimsup 43171 limsupgtlem 43208 sge0split 43837 |
Copyright terms: Public domain | W3C validator |