MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresss Structured version   Visualization version   GIF version

Theorem rnresss 6017
Description: The range of a restriction is a subset of the whole range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
rnresss ran (𝐴𝐵) ⊆ ran 𝐴

Proof of Theorem rnresss
StepHypRef Expression
1 resss 6006 . 2 (𝐴𝐵) ⊆ 𝐴
21rnssi 5939 1 ran (𝐴𝐵) ⊆ ran 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3948  ran crn 5677  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688
This theorem is referenced by:  gsumhashmul  32646  nelrnres  44348  limsupvaluz2  44916  supcnvlimsup  44918  limsupgtlem  44955  sge0split  45587
  Copyright terms: Public domain W3C validator