Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0less Structured version   Visualization version   GIF version

Theorem sge0less 46374
Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.1 (𝜑𝑋𝑉)
sge0less.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0less (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))

Proof of Theorem sge0less
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0less.1 . . . . . . 7 (𝜑𝑋𝑉)
2 inex1g 5261 . . . . . . 7 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.2 . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6697 . . . . . . 7 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . . . . 6 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 46367 . . . . 5 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 pnfge 13050 . . . . 5 ((Σ^‘(𝐹𝑌)) ∈ ℝ* → (Σ^‘(𝐹𝑌)) ≤ +∞)
97, 8syl 17 . . . 4 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ +∞)
109adantr 480 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ +∞)
11 id 22 . . . . 5 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
1211eqcomd 2735 . . . 4 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
1312adantl 481 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
1410, 13breqtrd 5121 . 2 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
15 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝜑)
16 simpr 484 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ¬ (Σ^𝐹) = +∞)
1715, 1syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝑋𝑉)
1815, 4syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
1917, 18sge0repnf 46368 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2016, 19mpbird 257 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ)
21 elinel1 4154 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ∈ 𝒫 (𝑋𝑌))
22 elpwi 4560 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (𝑋𝑌) → 𝑥 ⊆ (𝑋𝑌))
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ⊆ (𝑋𝑌))
24 inss2 4191 . . . . . . . . . . . . . . . 16 (𝑋𝑌) ⊆ 𝑌
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → (𝑋𝑌) ⊆ 𝑌)
2623, 25sstrd 3948 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥𝑌)
2726adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑌)
28 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2927, 28sseldd 3938 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑌)
30 fvres 6845 . . . . . . . . . . . 12 (𝑦𝑌 → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3129, 30syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3231ralrimiva 3121 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → ∀𝑦𝑥 ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3332sumeq2d 15626 . . . . . . . . 9 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑌)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
3433mpteq2ia 5190 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) = (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
35 inss1 4190 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
3635sspwi 4565 . . . . . . . . . 10 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
37 ssrin 4195 . . . . . . . . . 10 (𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋 → (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
3836, 37ax-mp 5 . . . . . . . . 9 (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)
39 mptss 5997 . . . . . . . . 9 ((𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin) → (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4038, 39ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4134, 40eqsstri 3984 . . . . . . 7 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
42 rnss 5885 . . . . . . 7 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4341, 42ax-mp 5 . . . . . 6 ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4443a1i 11 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
454adantr 480 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,]+∞))
461adantr 480 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑋𝑉)
47 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
4846, 45, 47sge0rern 46370 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran 𝐹)
4945, 48fge0iccico 46352 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,)+∞))
5049sge0rnre 46346 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
51 ressxr 11178 . . . . . 6 ℝ ⊆ ℝ*
5250, 51sstrdi 3950 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
53 supxrss 13252 . . . . 5 ((ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5444, 52, 53syl2anc 584 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5546, 2syl 17 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝑋𝑌) ∈ V)
5645, 5syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
57 nelrnres 45165 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑌))
5848, 57syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran (𝐹𝑌))
5956, 58fge0iccico 46352 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,)+∞))
6055, 59sge0reval 46354 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) = sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ))
6146, 49sge0reval 46354 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
6260, 61breq12d 5108 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
6354, 62mpbird 257 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6415, 20, 63syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6514, 64pm2.61dan 812 1 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  𝒫 cpw 4553   class class class wbr 5095  cmpt 5176  ran crn 5624  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  supcsup 9349  cr 11027  0cc0 11028  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  [,]cicc 13269  Σcsu 15611  Σ^csumge0 46344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-sumge0 46345
This theorem is referenced by:  sge0ssre  46379  sge0lefi  46380  sge0lessmpt  46381  sge0resrnlem  46385  sge0le  46389
  Copyright terms: Public domain W3C validator