Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0less Structured version   Visualization version   GIF version

Theorem sge0less 42957
 Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.1 (𝜑𝑋𝑉)
sge0less.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0less (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))

Proof of Theorem sge0less
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0less.1 . . . . . . 7 (𝜑𝑋𝑉)
2 inex1g 5209 . . . . . . 7 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.2 . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6537 . . . . . . 7 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . . . . 6 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 42950 . . . . 5 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 pnfge 12522 . . . . 5 ((Σ^‘(𝐹𝑌)) ∈ ℝ* → (Σ^‘(𝐹𝑌)) ≤ +∞)
97, 8syl 17 . . . 4 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ +∞)
109adantr 484 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ +∞)
11 id 22 . . . . 5 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
1211eqcomd 2830 . . . 4 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
1312adantl 485 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
1410, 13breqtrd 5078 . 2 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
15 simpl 486 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝜑)
16 simpr 488 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ¬ (Σ^𝐹) = +∞)
1715, 1syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝑋𝑉)
1815, 4syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
1917, 18sge0repnf 42951 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2016, 19mpbird 260 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ)
21 elinel1 4157 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ∈ 𝒫 (𝑋𝑌))
22 elpwi 4531 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (𝑋𝑌) → 𝑥 ⊆ (𝑋𝑌))
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ⊆ (𝑋𝑌))
24 inss2 4191 . . . . . . . . . . . . . . . 16 (𝑋𝑌) ⊆ 𝑌
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → (𝑋𝑌) ⊆ 𝑌)
2623, 25sstrd 3963 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥𝑌)
2726adantr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑌)
28 simpr 488 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2927, 28sseldd 3954 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑌)
30 fvres 6680 . . . . . . . . . . . 12 (𝑦𝑌 → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3129, 30syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3231ralrimiva 3177 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → ∀𝑦𝑥 ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3332sumeq2d 15059 . . . . . . . . 9 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑌)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
3433mpteq2ia 5143 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) = (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
35 inss1 4190 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
3635sspwi 4536 . . . . . . . . . 10 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
37 ssrin 4195 . . . . . . . . . 10 (𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋 → (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
3836, 37ax-mp 5 . . . . . . . . 9 (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)
39 mptss 5897 . . . . . . . . 9 ((𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin) → (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4038, 39ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4134, 40eqsstri 3987 . . . . . . 7 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
42 rnss 5796 . . . . . . 7 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4341, 42ax-mp 5 . . . . . 6 ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4443a1i 11 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
454adantr 484 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,]+∞))
461adantr 484 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑋𝑉)
47 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
4846, 45, 47sge0rern 42953 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran 𝐹)
4945, 48fge0iccico 42935 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,)+∞))
5049sge0rnre 42929 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
51 ressxr 10683 . . . . . 6 ℝ ⊆ ℝ*
5250, 51sstrdi 3965 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
53 supxrss 12722 . . . . 5 ((ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5444, 52, 53syl2anc 587 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5546, 2syl 17 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝑋𝑌) ∈ V)
5645, 5syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
57 nelrnres 41739 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑌))
5848, 57syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran (𝐹𝑌))
5956, 58fge0iccico 42935 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,)+∞))
6055, 59sge0reval 42937 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) = sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ))
6146, 49sge0reval 42937 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
6260, 61breq12d 5065 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
6354, 62mpbird 260 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6415, 20, 63syl2anc 587 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6514, 64pm2.61dan 812 1 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Vcvv 3480   ∩ cin 3918   ⊆ wss 3919  𝒫 cpw 4522   class class class wbr 5052   ↦ cmpt 5132  ran crn 5543   ↾ cres 5544  ⟶wf 6339  ‘cfv 6343  (class class class)co 7149  Fincfn 8505  supcsup 8901  ℝcr 10534  0cc0 10535  +∞cpnf 10670  ℝ*cxr 10672   < clt 10673   ≤ cle 10674  [,]cicc 12738  Σcsu 15042  Σ^csumge0 42927 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-sumge0 42928 This theorem is referenced by:  sge0ssre  42962  sge0lefi  42963  sge0lessmpt  42964  sge0resrnlem  42968  sge0le  42972
 Copyright terms: Public domain W3C validator