Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0less Structured version   Visualization version   GIF version

Theorem sge0less 43930
Description: A shorter sum of nonnegative extended reals is smaller than a longer one. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0less.1 (𝜑𝑋𝑉)
sge0less.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0less (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))

Proof of Theorem sge0less
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0less.1 . . . . . . 7 (𝜑𝑋𝑉)
2 inex1g 5243 . . . . . . 7 (𝑋𝑉 → (𝑋𝑌) ∈ V)
31, 2syl 17 . . . . . 6 (𝜑 → (𝑋𝑌) ∈ V)
4 sge0less.2 . . . . . . 7 (𝜑𝐹:𝑋⟶(0[,]+∞))
5 fresin 6643 . . . . . . 7 (𝐹:𝑋⟶(0[,]+∞) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
64, 5syl 17 . . . . . 6 (𝜑 → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
73, 6sge0xrcl 43923 . . . . 5 (𝜑 → (Σ^‘(𝐹𝑌)) ∈ ℝ*)
8 pnfge 12866 . . . . 5 ((Σ^‘(𝐹𝑌)) ∈ ℝ* → (Σ^‘(𝐹𝑌)) ≤ +∞)
97, 8syl 17 . . . 4 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ +∞)
109adantr 481 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ +∞)
11 id 22 . . . . 5 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
1211eqcomd 2744 . . . 4 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
1312adantl 482 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
1410, 13breqtrd 5100 . 2 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
15 simpl 483 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝜑)
16 simpr 485 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ¬ (Σ^𝐹) = +∞)
1715, 1syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝑋𝑉)
1815, 4syl 17 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
1917, 18sge0repnf 43924 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2016, 19mpbird 256 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ)
21 elinel1 4129 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ∈ 𝒫 (𝑋𝑌))
22 elpwi 4542 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 (𝑋𝑌) → 𝑥 ⊆ (𝑋𝑌))
2321, 22syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥 ⊆ (𝑋𝑌))
24 inss2 4163 . . . . . . . . . . . . . . . 16 (𝑋𝑌) ⊆ 𝑌
2524a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → (𝑋𝑌) ⊆ 𝑌)
2623, 25sstrd 3931 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → 𝑥𝑌)
2726adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑌)
28 simpr 485 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
2927, 28sseldd 3922 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑌)
30 fvres 6793 . . . . . . . . . . . 12 (𝑦𝑌 → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3129, 30syl 17 . . . . . . . . . . 11 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3231ralrimiva 3103 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → ∀𝑦𝑥 ((𝐹𝑌)‘𝑦) = (𝐹𝑦))
3332sumeq2d 15414 . . . . . . . . 9 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑌)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
3433mpteq2ia 5177 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) = (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
35 inss1 4162 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
3635sspwi 4547 . . . . . . . . . 10 𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋
37 ssrin 4167 . . . . . . . . . 10 (𝒫 (𝑋𝑌) ⊆ 𝒫 𝑋 → (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin))
3836, 37ax-mp 5 . . . . . . . . 9 (𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin)
39 mptss 5950 . . . . . . . . 9 ((𝒫 (𝑋𝑌) ∩ Fin) ⊆ (𝒫 𝑋 ∩ Fin) → (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4038, 39ax-mp 5 . . . . . . . 8 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4134, 40eqsstri 3955 . . . . . . 7 (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
42 rnss 5848 . . . . . . 7 ((𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
4341, 42ax-mp 5 . . . . . 6 ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
4443a1i 11 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
454adantr 481 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,]+∞))
461adantr 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑋𝑉)
47 simpr 485 . . . . . . . . 9 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
4846, 45, 47sge0rern 43926 . . . . . . . 8 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran 𝐹)
4945, 48fge0iccico 43908 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑋⟶(0[,)+∞))
5049sge0rnre 43902 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
51 ressxr 11019 . . . . . 6 ℝ ⊆ ℝ*
5250, 51sstrdi 3933 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
53 supxrss 13066 . . . . 5 ((ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)) ⊆ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5444, 52, 53syl2anc 584 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
5546, 2syl 17 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝑋𝑌) ∈ V)
5645, 5syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,]+∞))
57 nelrnres 42725 . . . . . . . 8 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑌))
5848, 57syl 17 . . . . . . 7 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ¬ +∞ ∈ ran (𝐹𝑌))
5956, 58fge0iccico 43908 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐹𝑌):(𝑋𝑌)⟶(0[,)+∞))
6055, 59sge0reval 43910 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) = sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ))
6146, 49sge0reval 43910 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
6260, 61breq12d 5087 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹) ↔ sup(ran (𝑥 ∈ (𝒫 (𝑋𝑌) ∩ Fin) ↦ Σ𝑦𝑥 ((𝐹𝑌)‘𝑦)), ℝ*, < ) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
6354, 62mpbird 256 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6415, 20, 63syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) = +∞) → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
6514, 64pm2.61dan 810 1 (𝜑 → (Σ^‘(𝐹𝑌)) ≤ (Σ^𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082  Σcsu 15397  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0ssre  43935  sge0lefi  43936  sge0lessmpt  43937  sge0resrnlem  43941  sge0le  43945
  Copyright terms: Public domain W3C validator