| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wessf1orn | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| wessf1orn.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| wessf1orn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| wessf1orn.r | ⊢ (𝜑 → 𝑅 We 𝐴) |
| Ref | Expression |
|---|---|
| wessf1orn | ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wessf1orn.f | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | wessf1orn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | wessf1orn.r | . 2 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 4 | eqid 2731 | . 2 ⊢ (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) | |
| 5 | 1, 2, 3, 4 | wessf1ornlem 45281 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 𝒫 cpw 4547 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 We wwe 5566 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 “ cima 5617 Fn wfn 6476 –1-1-onto→wf1o 6480 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 |
| This theorem is referenced by: ssnnf1octb 45290 sge0resrn 46501 nnfoctbdj 46553 |
| Copyright terms: Public domain | W3C validator |