Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wessf1orn | Structured version Visualization version GIF version |
Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
wessf1orn.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
wessf1orn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
wessf1orn.r | ⊢ (𝜑 → 𝑅 We 𝐴) |
Ref | Expression |
---|---|
wessf1orn | ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wessf1orn.f | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | wessf1orn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | wessf1orn.r | . 2 ⊢ (𝜑 → 𝑅 We 𝐴) | |
4 | eqid 2758 | . 2 ⊢ (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) | |
5 | 1, 2, 3, 4 | wessf1ornlem 42226 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 𝒫 cpw 4497 {csn 4525 class class class wbr 5036 ↦ cmpt 5116 We wwe 5486 ◡ccnv 5527 ran crn 5529 ↾ cres 5530 “ cima 5531 Fn wfn 6335 –1-1-onto→wf1o 6339 ℩crio 7113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 |
This theorem is referenced by: ssnnf1octb 42237 sge0resrn 43454 nnfoctbdj 43506 |
Copyright terms: Public domain | W3C validator |