| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wessf1orn | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| wessf1orn.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| wessf1orn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| wessf1orn.r | ⊢ (𝜑 → 𝑅 We 𝐴) |
| Ref | Expression |
|---|---|
| wessf1orn | ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wessf1orn.f | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | wessf1orn.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | wessf1orn.r | . 2 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 4 | eqid 2729 | . 2 ⊢ (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) | |
| 5 | 1, 2, 3, 4 | wessf1ornlem 45173 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 ↦ cmpt 5173 We wwe 5571 ◡ccnv 5618 ran crn 5620 ↾ cres 5621 “ cima 5622 Fn wfn 6477 –1-1-onto→wf1o 6481 ℩crio 7305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 |
| This theorem is referenced by: ssnnf1octb 45182 sge0resrn 46395 nnfoctbdj 46447 |
| Copyright terms: Public domain | W3C validator |