Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wessf1orn Structured version   Visualization version   GIF version

Theorem wessf1orn 42612
Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
wessf1orn.f (𝜑𝐹 Fn 𝐴)
wessf1orn.a (𝜑𝐴𝑉)
wessf1orn.r (𝜑𝑅 We 𝐴)
Assertion
Ref Expression
wessf1orn (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem wessf1orn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wessf1orn.f . 2 (𝜑𝐹 Fn 𝐴)
2 wessf1orn.a . 2 (𝜑𝐴𝑉)
3 wessf1orn.r . 2 (𝜑𝑅 We 𝐴)
4 eqid 2738 . 2 (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
51, 2, 3, 4wessf1ornlem 42611 1 (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wral 3063  wrex 3064  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153   We wwe 5534  ccnv 5579  ran crn 5581  cres 5582  cima 5583   Fn wfn 6413  1-1-ontowf1o 6417  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212
This theorem is referenced by:  ssnnf1octb  42622  sge0resrn  43832  nnfoctbdj  43884
  Copyright terms: Public domain W3C validator