![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wessf1orn | Structured version Visualization version GIF version |
Description: Given a function πΉ on a well-ordered domain π΄ there exists a subset of π΄ such that πΉ restricted to such subset is injective and onto the range of πΉ (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
wessf1orn.f | β’ (π β πΉ Fn π΄) |
wessf1orn.a | β’ (π β π΄ β π) |
wessf1orn.r | β’ (π β π We π΄) |
Ref | Expression |
---|---|
wessf1orn | β’ (π β βπ₯ β π« π΄(πΉ βΎ π₯):π₯β1-1-ontoβran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wessf1orn.f | . 2 β’ (π β πΉ Fn π΄) | |
2 | wessf1orn.a | . 2 β’ (π β π΄ β π) | |
3 | wessf1orn.r | . 2 β’ (π β π We π΄) | |
4 | eqid 2731 | . 2 β’ (π¦ β ran πΉ β¦ (β©π₯ β (β‘πΉ β {π¦})βπ§ β (β‘πΉ β {π¦}) Β¬ π§π π₯)) = (π¦ β ran πΉ β¦ (β©π₯ β (β‘πΉ β {π¦})βπ§ β (β‘πΉ β {π¦}) Β¬ π§π π₯)) | |
5 | 1, 2, 3, 4 | wessf1ornlem 44183 | 1 β’ (π β βπ₯ β π« π΄(πΉ βΎ π₯):π₯β1-1-ontoβran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wcel 2105 βwral 3060 βwrex 3069 π« cpw 4602 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 We wwe 5630 β‘ccnv 5675 ran crn 5677 βΎ cres 5678 β cima 5679 Fn wfn 6538 β1-1-ontoβwf1o 6542 β©crio 7367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 |
This theorem is referenced by: ssnnf1octb 44192 sge0resrn 45419 nnfoctbdj 45471 |
Copyright terms: Public domain | W3C validator |