Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wessf1orn Structured version   Visualization version   GIF version

Theorem wessf1orn 44184
Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
wessf1orn.f (πœ‘ β†’ 𝐹 Fn 𝐴)
wessf1orn.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
wessf1orn.r (πœ‘ β†’ 𝑅 We 𝐴)
Assertion
Ref Expression
wessf1orn (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝒫 𝐴(𝐹 β†Ύ π‘₯):π‘₯–1-1-ontoβ†’ran 𝐹)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐹   π‘₯,𝑅
Allowed substitution hints:   πœ‘(π‘₯)   𝑉(π‘₯)

Proof of Theorem wessf1orn
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wessf1orn.f . 2 (πœ‘ β†’ 𝐹 Fn 𝐴)
2 wessf1orn.a . 2 (πœ‘ β†’ 𝐴 ∈ 𝑉)
3 wessf1orn.r . 2 (πœ‘ β†’ 𝑅 We 𝐴)
4 eqid 2731 . 2 (𝑦 ∈ ran 𝐹 ↦ (β„©π‘₯ ∈ (◑𝐹 β€œ {𝑦})βˆ€π‘§ ∈ (◑𝐹 β€œ {𝑦}) Β¬ 𝑧𝑅π‘₯)) = (𝑦 ∈ ran 𝐹 ↦ (β„©π‘₯ ∈ (◑𝐹 β€œ {𝑦})βˆ€π‘§ ∈ (◑𝐹 β€œ {𝑦}) Β¬ 𝑧𝑅π‘₯))
51, 2, 3, 4wessf1ornlem 44183 1 (πœ‘ β†’ βˆƒπ‘₯ ∈ 𝒫 𝐴(𝐹 β†Ύ π‘₯):π‘₯–1-1-ontoβ†’ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  π’« cpw 4602  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   We wwe 5630  β—‘ccnv 5675  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679   Fn wfn 6538  β€“1-1-ontoβ†’wf1o 6542  β„©crio 7367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368
This theorem is referenced by:  ssnnf1octb  44192  sge0resrn  45419  nnfoctbdj  45471
  Copyright terms: Public domain W3C validator