Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sup Structured version   Visualization version   GIF version

Theorem sge0sup 46513
Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sup.x (𝜑𝑋𝑉)
sge0sup.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0sup (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0sup
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ = +∞)
2 sge0sup.x . . . . 5 (𝜑𝑋𝑉)
32adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
4 sge0sup.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
6 simpr 484 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
73, 5, 6sge0pnfval 46495 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
8 vex 3441 . . . . . . . . 9 𝑥 ∈ V
98a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
104adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
11 elinel1 4150 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
12 elpwi 4556 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
1311, 12syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1413adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
1510, 14fssresd 6695 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
169, 15sge0xrcl 46507 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1716adantlr 715 . . . . . 6 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1817ralrimiva 3125 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
19 eqid 2733 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2019rnmptss 7062 . . . . 5 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
2118, 20syl 17 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
224ffnd 6657 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
23 fvelrnb 6888 . . . . . . . 8 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2422, 23syl 17 . . . . . . 7 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2524adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
266, 25mpbid 232 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦𝑋 (𝐹𝑦) = +∞)
27 snelpwi 5387 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ 𝒫 𝑋)
28 snfi 8972 . . . . . . . . . . . . 13 {𝑦} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ Fin)
3027, 29elind 4149 . . . . . . . . . . 11 (𝑦𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
31303ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
32 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝑦𝑋)
3343ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
3432snssd 4760 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ⊆ 𝑋)
3533, 34fssresd 6695 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞))
3632, 35sge0sn 46501 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (Σ^‘(𝐹 ↾ {𝑦})) = ((𝐹 ↾ {𝑦})‘𝑦))
37 vsnid 4615 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
38 fvres 6847 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
3937, 38ax-mp 5 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦)
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
41 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) = +∞)
4236, 40, 413eqtrrd 2773 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ = (Σ^‘(𝐹 ↾ {𝑦})))
43 reseq2 5927 . . . . . . . . . . . 12 (𝑥 = {𝑦} → (𝐹𝑥) = (𝐹 ↾ {𝑦}))
4443fveq2d 6832 . . . . . . . . . . 11 (𝑥 = {𝑦} → (Σ^‘(𝐹𝑥)) = (Σ^‘(𝐹 ↾ {𝑦})))
4544rspceeqv 3596 . . . . . . . . . 10 (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ = (Σ^‘(𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
4631, 42, 45syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
47 pnfex 11172 . . . . . . . . . 10 +∞ ∈ V
4847a1i 11 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ V)
4919, 46, 48elrnmptd 5907 . . . . . . . 8 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
50493exp 1119 . . . . . . 7 (𝜑 → (𝑦𝑋 → ((𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))))
5150rexlimdv 3132 . . . . . 6 (𝜑 → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5251adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5326, 52mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
54 supxrpnf 13219 . . . 4 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* ∧ +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
5521, 53, 54syl2anc 584 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
561, 7, 553eqtr4d 2778 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
572adantr 480 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
584adantr 480 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
59 simpr 484 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
6058, 59fge0iccico 46492 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
6157, 60sge0reval 46494 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
62 elinel2 4151 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
6362adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
6415adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
65 nelrnres 45308 . . . . . . . . . 10 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑥))
6665ad2antlr 727 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝑥))
6764, 66fge0iccico 46492 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6863, 67sge0fsum 46509 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
69 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
70 fvres 6847 . . . . . . . . . 10 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7169, 70syl 17 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7271sumeq2dv 15611 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7372adantl 481 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7468, 73eqtrd 2768 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 (𝐹𝑦))
7574mpteq2dva 5186 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7675rneqd 5882 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7776supeq1d 9337 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
7861, 77eqtr4d 2771 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
7956, 78pm2.61dan 812 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4549  {csn 4575  cmpt 5174  ran crn 5620  cres 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Fincfn 8875  supcsup 9331  0cc0 11013  +∞cpnf 11150  *cxr 11152   < clt 11153  [,]cicc 13250  Σcsu 15595  Σ^csumge0 46484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-sumge0 46485
This theorem is referenced by:  sge0gerp  46517  sge0pnffigt  46518  sge0lefi  46520
  Copyright terms: Public domain W3C validator