Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sup Structured version   Visualization version   GIF version

Theorem sge0sup 46312
Description: The arbitrary sum of nonnegative extended reals is the supremum of finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sup.x (𝜑𝑋𝑉)
sge0sup.f (𝜑𝐹:𝑋⟶(0[,]+∞))
Assertion
Ref Expression
sge0sup (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0sup
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ = +∞)
2 sge0sup.x . . . . 5 (𝜑𝑋𝑉)
32adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
4 sge0sup.f . . . . 5 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 480 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
6 simpr 484 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
73, 5, 6sge0pnfval 46294 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
8 vex 3492 . . . . . . . . 9 𝑥 ∈ V
98a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ V)
104adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
11 elinel1 4224 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋)
12 elpwi 4629 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
1311, 12syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
1413adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
1510, 14fssresd 6788 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
169, 15sge0xrcl 46306 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1716adantlr 714 . . . . . 6 (((𝜑 ∧ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
1817ralrimiva 3152 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
19 eqid 2740 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2019rnmptss 7157 . . . . 5 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
2118, 20syl 17 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
224ffnd 6748 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
23 fvelrnb 6982 . . . . . . . 8 (𝐹 Fn 𝑋 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2422, 23syl 17 . . . . . . 7 (𝜑 → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
2524adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (+∞ ∈ ran 𝐹 ↔ ∃𝑦𝑋 (𝐹𝑦) = +∞))
266, 25mpbid 232 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ∃𝑦𝑋 (𝐹𝑦) = +∞)
27 snelpwi 5463 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ 𝒫 𝑋)
28 snfi 9109 . . . . . . . . . . . . 13 {𝑦} ∈ Fin
2928a1i 11 . . . . . . . . . . . 12 (𝑦𝑋 → {𝑦} ∈ Fin)
3027, 29elind 4223 . . . . . . . . . . 11 (𝑦𝑋 → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
31303ad2ant2 1134 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ∈ (𝒫 𝑋 ∩ Fin))
32 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝑦𝑋)
3343ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → 𝐹:𝑋⟶(0[,]+∞))
3432snssd 4834 . . . . . . . . . . . . 13 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → {𝑦} ⊆ 𝑋)
3533, 34fssresd 6788 . . . . . . . . . . . 12 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹 ↾ {𝑦}):{𝑦}⟶(0[,]+∞))
3632, 35sge0sn 46300 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (Σ^‘(𝐹 ↾ {𝑦})) = ((𝐹 ↾ {𝑦})‘𝑦))
37 vsnid 4685 . . . . . . . . . . . . 13 𝑦 ∈ {𝑦}
38 fvres 6939 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦} → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
3937, 38ax-mp 5 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦)
4039a1i 11 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ((𝐹 ↾ {𝑦})‘𝑦) = (𝐹𝑦))
41 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → (𝐹𝑦) = +∞)
4236, 40, 413eqtrrd 2785 . . . . . . . . . 10 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ = (Σ^‘(𝐹 ↾ {𝑦})))
43 reseq2 6004 . . . . . . . . . . . 12 (𝑥 = {𝑦} → (𝐹𝑥) = (𝐹 ↾ {𝑦}))
4443fveq2d 6924 . . . . . . . . . . 11 (𝑥 = {𝑦} → (Σ^‘(𝐹𝑥)) = (Σ^‘(𝐹 ↾ {𝑦})))
4544rspceeqv 3658 . . . . . . . . . 10 (({𝑦} ∈ (𝒫 𝑋 ∩ Fin) ∧ +∞ = (Σ^‘(𝐹 ↾ {𝑦}))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
4631, 42, 45syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)+∞ = (Σ^‘(𝐹𝑥)))
47 pnfex 11343 . . . . . . . . . 10 +∞ ∈ V
4847a1i 11 . . . . . . . . 9 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ V)
4919, 46, 48elrnmptd 5986 . . . . . . . 8 ((𝜑𝑦𝑋 ∧ (𝐹𝑦) = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
50493exp 1119 . . . . . . 7 (𝜑 → (𝑦𝑋 → ((𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))))
5150rexlimdv 3159 . . . . . 6 (𝜑 → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5251adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (∃𝑦𝑋 (𝐹𝑦) = +∞ → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))))
5326, 52mpd 15 . . . 4 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
54 supxrpnf 13380 . . . 4 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ* ∧ +∞ ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
5521, 53, 54syl2anc 583 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = +∞)
561, 7, 553eqtr4d 2790 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
572adantr 480 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝑋𝑉)
584adantr 480 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
59 simpr 484 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ ran 𝐹)
6058, 59fge0iccico 46291 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,)+∞))
6157, 60sge0reval 46293 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
62 elinel2 4225 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin)
6362adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin)
6415adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
65 nelrnres 45094 . . . . . . . . . 10 (¬ +∞ ∈ ran 𝐹 → ¬ +∞ ∈ ran (𝐹𝑥))
6665ad2antlr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝑥))
6764, 66fge0iccico 46291 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,)+∞))
6863, 67sge0fsum 46308 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 ((𝐹𝑥)‘𝑦))
69 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
70 fvres 6939 . . . . . . . . . 10 (𝑦𝑥 → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7169, 70syl 17 . . . . . . . . 9 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦𝑥) → ((𝐹𝑥)‘𝑦) = (𝐹𝑦))
7271sumeq2dv 15750 . . . . . . . 8 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7372adantl 481 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 ((𝐹𝑥)‘𝑦) = Σ𝑦𝑥 (𝐹𝑦))
7468, 73eqtrd 2780 . . . . . 6 (((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) = Σ𝑦𝑥 (𝐹𝑦))
7574mpteq2dva 5266 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7675rneqd 5963 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
7776supeq1d 9515 . . 3 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
7861, 77eqtr4d 2783 . 2 ((𝜑 ∧ ¬ +∞ ∈ ran 𝐹) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
7956, 78pm2.61dan 812 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622  {csn 4648  cmpt 5249  ran crn 5701  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  supcsup 9509  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  [,]cicc 13410  Σcsu 15734  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  sge0gerp  46316  sge0pnffigt  46317  sge0lefi  46319
  Copyright terms: Public domain W3C validator