| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2379 resf1extb 7870 smogt 8293 inf3lem3 9527 noinfep 9557 cfsmolem 10168 genpnnp 10903 ltaddpr2 10933 fzen 13443 hashge2el2dif 14389 lcmf 16546 ncoprmlnprm 16641 prmgaplem7 16971 initoeu1 17920 termoeu1 17927 dfgrp3lem 18953 cply1mul 22212 scmataddcl 22432 scmatsubcl 22433 2ndcctbss 23371 fgcfil 25199 wilthlem3 27008 sltval2 27596 nosupbnd1lem5 27652 cusgrsize2inds 29434 0enwwlksnge1 29844 clwlkclwwlklem2 29982 clwwlknonwwlknonb 30088 conngrv2edg 30177 pjjsi 31682 dfac21 43183 mogoldbb 47909 nnsum3primesle9 47918 evengpop3 47922 evengpoap3 47923 ztprmneprm 48471 lindslinindsimp1 48582 lindslinindsimp2lem5 48587 flnn0div2ge 48658 |
| Copyright terms: Public domain | W3C validator |