| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2375 resf1extb 7874 smogt 8297 inf3lem3 9545 noinfep 9575 cfsmolem 10183 genpnnp 10918 ltaddpr2 10948 fzen 13462 hashge2el2dif 14405 lcmf 16562 ncoprmlnprm 16657 prmgaplem7 16987 initoeu1 17936 termoeu1 17943 dfgrp3lem 18935 cply1mul 22199 scmataddcl 22419 scmatsubcl 22420 2ndcctbss 23358 fgcfil 25187 wilthlem3 26996 sltval2 27584 nosupbnd1lem5 27640 cusgrsize2inds 29417 0enwwlksnge1 29827 clwlkclwwlklem2 29962 clwwlknonwwlknonb 30068 conngrv2edg 30157 pjjsi 31662 dfac21 43039 mogoldbb 47770 nnsum3primesle9 47779 evengpop3 47783 evengpoap3 47784 ztprmneprm 48332 lindslinindsimp1 48443 lindslinindsimp2lem5 48448 flnn0div2ge 48519 |
| Copyright terms: Public domain | W3C validator |