MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldc Structured version   Visualization version   GIF version

Theorem syldc 48
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.)
Hypotheses
Ref Expression
syld.1 (𝜑 → (𝜓𝜒))
syld.2 (𝜑 → (𝜒𝜃))
Assertion
Ref Expression
syldc (𝜓 → (𝜑𝜃))

Proof of Theorem syldc
StepHypRef Expression
1 syld.1 . . 3 (𝜑 → (𝜓𝜒))
2 syld.2 . . 3 (𝜑 → (𝜒𝜃))
31, 2syld 47 . 2 (𝜑 → (𝜓𝜃))
43com12 32 1 (𝜓 → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  nfeqf2  2376  resf1extb  7913  smogt  8339  inf3lem3  9590  noinfep  9620  cfsmolem  10230  genpnnp  10965  ltaddpr2  10995  fzen  13509  hashge2el2dif  14452  lcmf  16610  ncoprmlnprm  16705  prmgaplem7  17035  initoeu1  17980  termoeu1  17987  dfgrp3lem  18977  cply1mul  22190  scmataddcl  22410  scmatsubcl  22411  2ndcctbss  23349  fgcfil  25178  wilthlem3  26987  sltval2  27575  nosupbnd1lem5  27631  cusgrsize2inds  29388  0enwwlksnge1  29801  clwlkclwwlklem2  29936  clwwlknonwwlknonb  30042  conngrv2edg  30131  pjjsi  31636  dfac21  43062  mogoldbb  47790  nnsum3primesle9  47799  evengpop3  47803  evengpoap3  47804  ztprmneprm  48339  lindslinindsimp1  48450  lindslinindsimp2lem5  48455  flnn0div2ge  48526
  Copyright terms: Public domain W3C validator