Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version |
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
Ref | Expression |
---|---|
syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nfeqf2 2377 wfrlem12OLD 8122 smogt 8169 inf3lem3 9318 noinfep 9348 cfsmolem 9957 genpnnp 10692 ltaddpr2 10722 fzen 13202 hashge2el2dif 14122 lcmf 16266 ncoprmlnprm 16360 prmgaplem7 16686 initoeu1 17642 termoeu1 17649 dfgrp3lem 18588 cply1mul 21375 scmataddcl 21573 scmatsubcl 21574 2ndcctbss 22514 fgcfil 24340 wilthlem3 26124 cusgrsize2inds 27723 0enwwlksnge1 28130 clwlkclwwlklem2 28265 clwwlknonwwlknonb 28371 conngrv2edg 28460 pjjsi 29963 sltval2 33786 nosupbnd1lem5 33842 dfac21 40807 mogoldbb 45125 nnsum3primesle9 45134 evengpop3 45138 evengpoap3 45139 ztprmneprm 45571 lindslinindsimp1 45686 lindslinindsimp2lem5 45691 flnn0div2ge 45767 |
Copyright terms: Public domain | W3C validator |