MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldc Structured version   Visualization version   GIF version

Theorem syldc 48
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.)
Hypotheses
Ref Expression
syld.1 (𝜑 → (𝜓𝜒))
syld.2 (𝜑 → (𝜒𝜃))
Assertion
Ref Expression
syldc (𝜓 → (𝜑𝜃))

Proof of Theorem syldc
StepHypRef Expression
1 syld.1 . . 3 (𝜑 → (𝜓𝜒))
2 syld.2 . . 3 (𝜑 → (𝜒𝜃))
31, 2syld 47 . 2 (𝜑 → (𝜓𝜃))
43com12 32 1 (𝜓 → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  nfeqf2  2385  wfrlem12OLD  8376  smogt  8423  inf3lem3  9699  noinfep  9729  cfsmolem  10339  genpnnp  11074  ltaddpr2  11104  fzen  13601  hashge2el2dif  14529  lcmf  16680  ncoprmlnprm  16775  prmgaplem7  17104  initoeu1  18078  termoeu1  18085  dfgrp3lem  19078  cply1mul  22321  scmataddcl  22543  scmatsubcl  22544  2ndcctbss  23484  fgcfil  25324  wilthlem3  27131  sltval2  27719  nosupbnd1lem5  27775  cusgrsize2inds  29489  0enwwlksnge1  29897  clwlkclwwlklem2  30032  clwwlknonwwlknonb  30138  conngrv2edg  30227  pjjsi  31732  dfac21  43023  mogoldbb  47659  nnsum3primesle9  47668  evengpop3  47672  evengpoap3  47673  ztprmneprm  48072  lindslinindsimp1  48186  lindslinindsimp2lem5  48191  flnn0div2ge  48267
  Copyright terms: Public domain W3C validator