MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syldc Structured version   Visualization version   GIF version

Theorem syldc 48
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.)
Hypotheses
Ref Expression
syld.1 (𝜑 → (𝜓𝜒))
syld.2 (𝜑 → (𝜒𝜃))
Assertion
Ref Expression
syldc (𝜓 → (𝜑𝜃))

Proof of Theorem syldc
StepHypRef Expression
1 syld.1 . . 3 (𝜑 → (𝜓𝜒))
2 syld.2 . . 3 (𝜑 → (𝜒𝜃))
31, 2syld 47 . 2 (𝜑 → (𝜓𝜃))
43com12 32 1 (𝜓 → (𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  nfeqf2  2375  resf1extb  7874  smogt  8297  inf3lem3  9545  noinfep  9575  cfsmolem  10183  genpnnp  10918  ltaddpr2  10948  fzen  13462  hashge2el2dif  14405  lcmf  16562  ncoprmlnprm  16657  prmgaplem7  16987  initoeu1  17936  termoeu1  17943  dfgrp3lem  18935  cply1mul  22199  scmataddcl  22419  scmatsubcl  22420  2ndcctbss  23358  fgcfil  25187  wilthlem3  26996  sltval2  27584  nosupbnd1lem5  27640  cusgrsize2inds  29417  0enwwlksnge1  29827  clwlkclwwlklem2  29962  clwwlknonwwlknonb  30068  conngrv2edg  30157  pjjsi  31662  dfac21  43039  mogoldbb  47770  nnsum3primesle9  47779  evengpop3  47783  evengpoap3  47784  ztprmneprm  48332  lindslinindsimp1  48443  lindslinindsimp2lem5  48448  flnn0div2ge  48519
  Copyright terms: Public domain W3C validator