| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2375 resf1extb 7910 smogt 8336 inf3lem3 9583 noinfep 9613 cfsmolem 10223 genpnnp 10958 ltaddpr2 10988 fzen 13502 hashge2el2dif 14445 lcmf 16603 ncoprmlnprm 16698 prmgaplem7 17028 initoeu1 17973 termoeu1 17980 dfgrp3lem 18970 cply1mul 22183 scmataddcl 22403 scmatsubcl 22404 2ndcctbss 23342 fgcfil 25171 wilthlem3 26980 sltval2 27568 nosupbnd1lem5 27624 cusgrsize2inds 29381 0enwwlksnge1 29794 clwlkclwwlklem2 29929 clwwlknonwwlknonb 30035 conngrv2edg 30124 pjjsi 31629 dfac21 43055 mogoldbb 47786 nnsum3primesle9 47795 evengpop3 47799 evengpoap3 47800 ztprmneprm 48335 lindslinindsimp1 48446 lindslinindsimp2lem5 48451 flnn0div2ge 48522 |
| Copyright terms: Public domain | W3C validator |