![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version |
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
Ref | Expression |
---|---|
syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nfeqf2 2377 wfrlem12OLD 8320 smogt 8367 inf3lem3 9625 noinfep 9655 cfsmolem 10265 genpnnp 11000 ltaddpr2 11030 fzen 13518 hashge2el2dif 14441 lcmf 16570 ncoprmlnprm 16664 prmgaplem7 16990 initoeu1 17961 termoeu1 17968 dfgrp3lem 18921 cply1mul 21818 scmataddcl 22018 scmatsubcl 22019 2ndcctbss 22959 fgcfil 24788 wilthlem3 26574 sltval2 27159 nosupbnd1lem5 27215 cusgrsize2inds 28710 0enwwlksnge1 29118 clwlkclwwlklem2 29253 clwwlknonwwlknonb 29359 conngrv2edg 29448 pjjsi 30953 dfac21 41808 mogoldbb 46453 nnsum3primesle9 46462 evengpop3 46466 evengpoap3 46467 ztprmneprm 47023 lindslinindsimp1 47138 lindslinindsimp2lem5 47143 flnn0div2ge 47219 |
Copyright terms: Public domain | W3C validator |