| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2382 resf1extb 7935 wfrlem12OLD 8339 smogt 8386 inf3lem3 9649 noinfep 9679 cfsmolem 10289 genpnnp 11024 ltaddpr2 11054 fzen 13563 hashge2el2dif 14503 lcmf 16657 ncoprmlnprm 16752 prmgaplem7 17082 initoeu1 18029 termoeu1 18036 dfgrp3lem 19026 cply1mul 22239 scmataddcl 22459 scmatsubcl 22460 2ndcctbss 23398 fgcfil 25228 wilthlem3 27037 sltval2 27625 nosupbnd1lem5 27681 cusgrsize2inds 29438 0enwwlksnge1 29851 clwlkclwwlklem2 29986 clwwlknonwwlknonb 30092 conngrv2edg 30181 pjjsi 31686 dfac21 43057 mogoldbb 47766 nnsum3primesle9 47775 evengpop3 47779 evengpoap3 47780 ztprmneprm 48289 lindslinindsimp1 48400 lindslinindsimp2lem5 48405 flnn0div2ge 48480 |
| Copyright terms: Public domain | W3C validator |