![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version |
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
Ref | Expression |
---|---|
syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nfeqf2 2385 wfrlem12OLD 8376 smogt 8423 inf3lem3 9699 noinfep 9729 cfsmolem 10339 genpnnp 11074 ltaddpr2 11104 fzen 13601 hashge2el2dif 14529 lcmf 16680 ncoprmlnprm 16775 prmgaplem7 17104 initoeu1 18078 termoeu1 18085 dfgrp3lem 19078 cply1mul 22321 scmataddcl 22543 scmatsubcl 22544 2ndcctbss 23484 fgcfil 25324 wilthlem3 27131 sltval2 27719 nosupbnd1lem5 27775 cusgrsize2inds 29489 0enwwlksnge1 29897 clwlkclwwlklem2 30032 clwwlknonwwlknonb 30138 conngrv2edg 30227 pjjsi 31732 dfac21 43023 mogoldbb 47659 nnsum3primesle9 47668 evengpop3 47672 evengpoap3 47673 ztprmneprm 48072 lindslinindsimp1 48186 lindslinindsimp2lem5 48191 flnn0div2ge 48267 |
Copyright terms: Public domain | W3C validator |