| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2376 resf1extb 7913 smogt 8339 inf3lem3 9590 noinfep 9620 cfsmolem 10230 genpnnp 10965 ltaddpr2 10995 fzen 13509 hashge2el2dif 14452 lcmf 16610 ncoprmlnprm 16705 prmgaplem7 17035 initoeu1 17980 termoeu1 17987 dfgrp3lem 18977 cply1mul 22190 scmataddcl 22410 scmatsubcl 22411 2ndcctbss 23349 fgcfil 25178 wilthlem3 26987 sltval2 27575 nosupbnd1lem5 27631 cusgrsize2inds 29388 0enwwlksnge1 29801 clwlkclwwlklem2 29936 clwwlknonwwlknonb 30042 conngrv2edg 30131 pjjsi 31636 dfac21 43062 mogoldbb 47790 nnsum3primesle9 47799 evengpop3 47803 evengpoap3 47804 ztprmneprm 48339 lindslinindsimp1 48450 lindslinindsimp2lem5 48455 flnn0div2ge 48526 |
| Copyright terms: Public domain | W3C validator |