Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version |
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
Ref | Expression |
---|---|
syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nfeqf2 2377 wfrlem12OLD 8151 smogt 8198 inf3lem3 9388 noinfep 9418 cfsmolem 10026 genpnnp 10761 ltaddpr2 10791 fzen 13273 hashge2el2dif 14194 lcmf 16338 ncoprmlnprm 16432 prmgaplem7 16758 initoeu1 17726 termoeu1 17733 dfgrp3lem 18673 cply1mul 21465 scmataddcl 21665 scmatsubcl 21666 2ndcctbss 22606 fgcfil 24435 wilthlem3 26219 cusgrsize2inds 27820 0enwwlksnge1 28229 clwlkclwwlklem2 28364 clwwlknonwwlknonb 28470 conngrv2edg 28559 pjjsi 30062 sltval2 33859 nosupbnd1lem5 33915 dfac21 40891 mogoldbb 45237 nnsum3primesle9 45246 evengpop3 45250 evengpoap3 45251 ztprmneprm 45683 lindslinindsimp1 45798 lindslinindsimp2lem5 45803 flnn0div2ge 45879 |
Copyright terms: Public domain | W3C validator |