![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version |
Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
Ref | Expression |
---|---|
syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: nfeqf2 2380 wfrlem12OLD 8359 smogt 8406 inf3lem3 9668 noinfep 9698 cfsmolem 10308 genpnnp 11043 ltaddpr2 11073 fzen 13578 hashge2el2dif 14516 lcmf 16667 ncoprmlnprm 16762 prmgaplem7 17091 initoeu1 18065 termoeu1 18072 dfgrp3lem 19069 cply1mul 22316 scmataddcl 22538 scmatsubcl 22539 2ndcctbss 23479 fgcfil 25319 wilthlem3 27128 sltval2 27716 nosupbnd1lem5 27772 cusgrsize2inds 29486 0enwwlksnge1 29894 clwlkclwwlklem2 30029 clwwlknonwwlknonb 30135 conngrv2edg 30224 pjjsi 31729 dfac21 43055 mogoldbb 47710 nnsum3primesle9 47719 evengpop3 47723 evengpoap3 47724 ztprmneprm 48192 lindslinindsimp1 48303 lindslinindsimp2lem5 48308 flnn0div2ge 48383 |
Copyright terms: Public domain | W3C validator |