| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syldc | Structured version Visualization version GIF version | ||
| Description: Syllogism deduction. Commuted form of syld 47. (Contributed by BJ, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| syldc | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: nfeqf2 2377 resf1extb 7864 smogt 8287 inf3lem3 9520 noinfep 9550 cfsmolem 10158 genpnnp 10893 ltaddpr2 10923 fzen 13438 hashge2el2dif 14384 lcmf 16541 ncoprmlnprm 16636 prmgaplem7 16966 initoeu1 17915 termoeu1 17922 dfgrp3lem 18948 cply1mul 22209 scmataddcl 22429 scmatsubcl 22430 2ndcctbss 23368 fgcfil 25196 wilthlem3 27005 sltval2 27593 nosupbnd1lem5 27649 cusgrsize2inds 29430 0enwwlksnge1 29840 clwlkclwwlklem2 29975 clwwlknonwwlknonb 30081 conngrv2edg 30170 pjjsi 31675 dfac21 43098 mogoldbb 47815 nnsum3primesle9 47824 evengpop3 47828 evengpoap3 47829 ztprmneprm 48377 lindslinindsimp1 48488 lindslinindsimp2lem5 48493 flnn0div2ge 48564 |
| Copyright terms: Public domain | W3C validator |