Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7167 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 484 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 (class class class)co 7150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-uni 4799 df-br 5033 df-iota 6294 df-fv 6343 df-ov 7153 |
This theorem is referenced by: fullresc 17180 fucpropd 17306 resssetc 17418 resscatc 17431 issstrmgm 17929 gsumpropd 17954 grpsubpropd 18271 sylow2blem2 18813 isringd 19406 prdsringd 19433 prdscrngd 19434 prds1 19435 pwsco1rhm 19561 pwsco2rhm 19562 pwsdiagrhm 19637 primefld 19652 sralmod 20027 sralmod0 20028 issubrngd2 20029 isdomn 20135 znzrh 20310 zncrng 20312 phlssphl 20424 sraassa 20632 opsrcrng 20819 opsrassa 20820 ply1lss 20920 ply1subrg 20921 opsr0 20942 opsr1 20943 subrgply1 20957 opsrring 20969 opsrlmod 20970 ply1mpl0 20979 ply1mpl1 20981 ply1ascl 20982 coe1tm 20997 evls1rhm 21041 evl1rhm 21051 evl1expd 21064 mat0 21117 matinvg 21118 matlmod 21129 scmatsrng1 21223 1mavmul 21248 mat2pmatmul 21431 ressprdsds 23073 nmpropd 23296 tng0 23345 tngngp2 23354 tnggrpr 23357 tngnrg 23376 sranlm 23386 pi1addval 23749 cvsi 23831 tcphphl 23927 istrkgc 26347 istrkgb 26348 abvpropd2 30761 resv0g 31061 resvcmn 31063 sra1r 31192 sraring 31193 sradrng 31194 srasubrg 31195 drgextlsp 31202 tnglvec 31216 tngdim 31217 matdim 31219 fedgmullem2 31232 zhmnrg 31436 prdsbnd 35511 prdstotbnd 35512 prdsbnd2 35513 erngdvlem3 38566 erngdvlem3-rN 38574 hlhils0 39521 hlhils1N 39522 hlhillvec 39527 hlhildrng 39528 hlhil0 39531 hlhillsm 39532 mendval 40500 mnring0gd 41302 mnringlmodd 41307 issubmgm2 44777 rnghmval 44882 lidlmmgm 44916 rnghmsubcsetclem1 44966 rnghmsubcsetclem2 44967 rngcifuestrc 44988 rhmsubcsetclem1 45012 rhmsubcsetclem2 45013 rhmsubcrngclem1 45018 rhmsubcrngclem2 45019 |
Copyright terms: Public domain | W3C validator |