| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7366 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: fullresc 17758 fucpropd 17887 resssetc 17999 resscatc 18016 issstrmgm 18527 gsumpropd 18552 issubmgm2 18577 grpsubpropd 18924 sylow2blem2 19500 isrngd 20058 prdsrngd 20061 isringd 20176 prdsringd 20206 prdscrngd 20207 prds1 20208 rnghmval 20325 pwsco1rhm 20387 pwsco2rhm 20388 pwsdiagrhm 20492 rnghmsubcsetclem1 20516 rnghmsubcsetclem2 20517 rngcifuestrc 20524 rhmsubcsetclem1 20545 rhmsubcsetclem2 20546 rhmsubcrngclem1 20551 rhmsubcrngclem2 20552 isdomn 20590 primefld 20690 sraring 21090 sralmod 21091 sralmod0 21092 issubrgd 21093 znzrh 21449 zncrng 21451 phlssphl 21566 sraassaOLD 21777 opsrcrng 21964 opsrassa 21965 ply1lss 22079 ply1subrg 22080 opsr0 22101 opsr1 22102 subrgply1 22115 opsrring 22127 opsrlmod 22128 ply1mpl0 22139 ply1mpl1 22141 ply1ascl 22142 coe1tm 22157 evls1rhm 22207 evl1rhm 22217 evl1expd 22230 evls1maplmhm 22262 mat0 22302 matinvg 22303 matlmod 22314 scmatsrng1 22408 1mavmul 22433 mat2pmatmul 22616 ressprdsds 24257 nmpropd 24480 tng0 24529 tngngp2 24538 tnggrpr 24541 tngnrg 24560 sranlm 24570 pi1addval 24946 cvsi 25028 tcphphl 25125 abvpropd2 32916 resv0g 33285 resvcmn 33287 sra1r 33563 sradrng 33564 sraidom 33565 srasubrg 33566 srapwov 33571 drgextlsp 33576 tnglvec 33595 tngdim 33596 matdim 33598 fedgmullem2 33613 fldextrspunfld 33659 zhmnrg 33948 prdsbnd 37793 prdstotbnd 37794 prdsbnd2 37795 erngdvlem3 40989 erngdvlem3-rN 40997 hlhils0 41944 hlhils1N 41945 hlhillvec 41950 hlhildrng 41951 hlhil0 41954 hlhillsm 41955 zndvdchrrhm 41965 isprimroot 42086 primrootsunit1 42090 mendval 43172 mnring0gd 44214 mnringlmodd 44219 ovmpt4d 48869 upfval 49181 prcofvalg 49381 |
| Copyright terms: Public domain | W3C validator |