| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7363 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: fullresc 17758 fucpropd 17887 resssetc 17999 resscatc 18016 issstrmgm 18561 gsumpropd 18586 issubmgm2 18611 grpsubpropd 18958 sylow2blem2 19533 isrngd 20091 prdsrngd 20094 isringd 20209 prdsringd 20239 prdscrngd 20240 prds1 20241 rnghmval 20358 pwsco1rhm 20417 pwsco2rhm 20418 pwsdiagrhm 20522 rnghmsubcsetclem1 20546 rnghmsubcsetclem2 20547 rngcifuestrc 20554 rhmsubcsetclem1 20575 rhmsubcsetclem2 20576 rhmsubcrngclem1 20581 rhmsubcrngclem2 20582 isdomn 20620 primefld 20720 sraring 21120 sralmod 21121 sralmod0 21122 issubrgd 21123 znzrh 21479 zncrng 21481 phlssphl 21596 sraassaOLD 21807 opsrcrng 21994 opsrassa 21995 ply1lss 22109 ply1subrg 22110 opsr0 22131 opsr1 22132 subrgply1 22145 opsrring 22157 opsrlmod 22158 ply1mpl0 22169 ply1mpl1 22171 ply1ascl 22172 coe1tm 22187 evls1rhm 22237 evl1rhm 22247 evl1expd 22260 evls1maplmhm 22292 mat0 22332 matinvg 22333 matlmod 22344 scmatsrng1 22438 1mavmul 22463 mat2pmatmul 22646 ressprdsds 24286 nmpropd 24509 tng0 24558 tngngp2 24567 tnggrpr 24570 tngnrg 24589 sranlm 24599 pi1addval 24975 cvsi 25057 tcphphl 25154 abvpropd2 32946 resv0g 33303 resvcmn 33305 sra1r 33593 sradrng 33594 sraidom 33595 srasubrg 33596 srapwov 33601 drgextlsp 33606 tnglvec 33625 tngdim 33626 matdim 33628 fedgmullem2 33643 fldextrspunfld 33689 zhmnrg 33978 prdsbnd 37832 prdstotbnd 37833 prdsbnd2 37834 erngdvlem3 41088 erngdvlem3-rN 41096 hlhils0 42043 hlhils1N 42044 hlhillvec 42049 hlhildrng 42050 hlhil0 42053 hlhillsm 42054 zndvdchrrhm 42064 isprimroot 42185 primrootsunit1 42189 mendval 43271 mnring0gd 44313 mnringlmodd 44318 ovmpt4d 48964 upfval 49276 prcofvalg 49476 |
| Copyright terms: Public domain | W3C validator |