| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7420 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: fullresc 17862 fucpropd 17991 resssetc 18103 resscatc 18120 issstrmgm 18629 gsumpropd 18654 issubmgm2 18679 grpsubpropd 19026 sylow2blem2 19600 isrngd 20131 prdsrngd 20134 isringd 20249 prdsringd 20279 prdscrngd 20280 prds1 20281 rnghmval 20398 pwsco1rhm 20460 pwsco2rhm 20461 pwsdiagrhm 20565 rnghmsubcsetclem1 20589 rnghmsubcsetclem2 20590 rngcifuestrc 20597 rhmsubcsetclem1 20618 rhmsubcsetclem2 20619 rhmsubcrngclem1 20624 rhmsubcrngclem2 20625 isdomn 20663 primefld 20763 sraring 21142 sralmod 21143 sralmod0 21144 issubrgd 21145 znzrh 21501 zncrng 21503 phlssphl 21617 sraassaOLD 21828 opsrcrng 22015 opsrassa 22016 ply1lss 22130 ply1subrg 22131 opsr0 22152 opsr1 22153 subrgply1 22166 opsrring 22178 opsrlmod 22179 ply1mpl0 22190 ply1mpl1 22192 ply1ascl 22193 coe1tm 22208 evls1rhm 22258 evl1rhm 22268 evl1expd 22281 evls1maplmhm 22313 mat0 22353 matinvg 22354 matlmod 22365 scmatsrng1 22459 1mavmul 22484 mat2pmatmul 22667 ressprdsds 24308 nmpropd 24531 tng0 24580 tngngp2 24589 tnggrpr 24592 tngnrg 24611 sranlm 24621 pi1addval 24997 cvsi 25079 tcphphl 25177 abvpropd2 32887 resv0g 33300 resvcmn 33302 sra1r 33567 sradrng 33568 sraidom 33569 srasubrg 33570 drgextlsp 33579 tnglvec 33598 tngdim 33599 matdim 33601 fedgmullem2 33616 fldextrspunfld 33663 zhmnrg 33942 prdsbnd 37763 prdstotbnd 37764 prdsbnd2 37765 erngdvlem3 40955 erngdvlem3-rN 40963 hlhils0 41910 hlhils1N 41911 hlhillvec 41916 hlhildrng 41917 hlhil0 41920 hlhillsm 41921 zndvdchrrhm 41931 isprimroot 42052 primrootsunit1 42056 mendval 43150 mnring0gd 44193 mnringlmodd 44198 ovmpt4d 48789 upfval 49059 prcofvalg 49235 |
| Copyright terms: Public domain | W3C validator |