![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 6921 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 474 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 (class class class)co 6904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-rex 3122 df-uni 4658 df-br 4873 df-iota 6085 df-fv 6130 df-ov 6907 |
This theorem is referenced by: fullresc 16862 fucpropd 16988 resssetc 17093 resscatc 17106 issstrmgm 17604 gsumpropd 17624 grpsubpropd 17873 sylow2blem2 18386 isringd 18938 prdsringd 18965 prdscrngd 18966 prds1 18967 pwsco1rhm 19093 pwsco2rhm 19094 pwsdiagrhm 19168 sralmod 19547 sralmod0 19548 issubrngd2 19549 isdomn 19654 sraassa 19685 opsrcrng 19847 opsrassa 19848 ply1lss 19925 ply1subrg 19926 opsr0 19947 opsr1 19948 subrgply1 19962 opsrring 19974 opsrlmod 19975 ply1mpl0 19984 ply1mpl1 19986 ply1ascl 19987 coe1tm 20002 evls1rhm 20046 evl1rhm 20055 evl1expd 20068 znzrh 20249 zncrng 20251 phlssphl 20365 mat0 20589 matinvg 20590 matlmod 20601 scmatsrng1 20696 1mavmul 20721 mat2pmatmul 20905 ressprdsds 22545 nmpropd 22767 tng0 22816 tngngp2 22825 tnggrpr 22828 tngnrg 22847 sranlm 22857 tcphphl 23394 istrkgc 25765 istrkgb 25766 abvpropd2 30196 resv0g 30380 resvcmn 30382 zhmnrg 30555 prdsbnd 34133 prdstotbnd 34134 prdsbnd2 34135 erngdvlem3 37064 erngdvlem3-rN 37072 hlhils0 38019 hlhils1N 38020 hlhillvec 38025 hlhildrng 38026 hlhil0 38029 hlhillsm 38030 mendval 38595 issubmgm2 42636 rnghmval 42737 lidlmmgm 42771 rnghmsubcsetclem1 42821 rnghmsubcsetclem2 42822 rngcifuestrc 42843 rhmsubcsetclem1 42867 rhmsubcsetclem2 42868 rhmsubcrngclem1 42873 rhmsubcrngclem2 42874 |
Copyright terms: Public domain | W3C validator |