Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: fullresc 17482 fucpropd 17611 resssetc 17723 resscatc 17740 issstrmgm 18252 gsumpropd 18277 grpsubpropd 18595 sylow2blem2 19141 isringd 19739 prdsringd 19766 prdscrngd 19767 prds1 19768 pwsco1rhm 19897 pwsco2rhm 19898 pwsdiagrhm 19973 primefld 19988 sralmod 20370 sralmod0 20371 issubrngd2 20372 isdomn 20478 znzrh 20662 zncrng 20664 phlssphl 20776 sraassa 20984 opsrcrng 21176 opsrassa 21177 ply1lss 21277 ply1subrg 21278 opsr0 21299 opsr1 21300 subrgply1 21314 opsrring 21326 opsrlmod 21327 ply1mpl0 21336 ply1mpl1 21338 ply1ascl 21339 coe1tm 21354 evls1rhm 21398 evl1rhm 21408 evl1expd 21421 mat0 21474 matinvg 21475 matlmod 21486 scmatsrng1 21580 1mavmul 21605 mat2pmatmul 21788 ressprdsds 23432 nmpropd 23656 tng0 23708 tngngp2 23722 tnggrpr 23725 tngnrg 23744 sranlm 23754 pi1addval 24117 cvsi 24199 tcphphl 24296 istrkgc 26719 istrkgb 26720 abvpropd2 31139 resv0g 31442 resvcmn 31444 sra1r 31573 sraring 31574 sradrng 31575 srasubrg 31576 drgextlsp 31583 tnglvec 31597 tngdim 31598 matdim 31600 fedgmullem2 31613 zhmnrg 31817 prdsbnd 35878 prdstotbnd 35879 prdsbnd2 35880 erngdvlem3 38931 erngdvlem3-rN 38939 hlhils0 39890 hlhils1N 39891 hlhillvec 39896 hlhildrng 39897 hlhil0 39900 hlhillsm 39901 mendval 40924 mnring0gd 41726 mnringlmodd 41733 issubmgm2 45232 rnghmval 45337 lidlmmgm 45371 rnghmsubcsetclem1 45421 rnghmsubcsetclem2 45422 rngcifuestrc 45443 rhmsubcsetclem1 45467 rhmsubcsetclem2 45468 rhmsubcrngclem1 45473 rhmsubcrngclem2 45474 |
Copyright terms: Public domain | W3C validator |