| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: fullresc 17793 fucpropd 17922 resssetc 18034 resscatc 18051 issstrmgm 18562 gsumpropd 18587 issubmgm2 18612 grpsubpropd 18959 sylow2blem2 19535 isrngd 20093 prdsrngd 20096 isringd 20211 prdsringd 20241 prdscrngd 20242 prds1 20243 rnghmval 20360 pwsco1rhm 20422 pwsco2rhm 20423 pwsdiagrhm 20527 rnghmsubcsetclem1 20551 rnghmsubcsetclem2 20552 rngcifuestrc 20559 rhmsubcsetclem1 20580 rhmsubcsetclem2 20581 rhmsubcrngclem1 20586 rhmsubcrngclem2 20587 isdomn 20625 primefld 20725 sraring 21125 sralmod 21126 sralmod0 21127 issubrgd 21128 znzrh 21484 zncrng 21486 phlssphl 21601 sraassaOLD 21812 opsrcrng 21999 opsrassa 22000 ply1lss 22114 ply1subrg 22115 opsr0 22136 opsr1 22137 subrgply1 22150 opsrring 22162 opsrlmod 22163 ply1mpl0 22174 ply1mpl1 22176 ply1ascl 22177 coe1tm 22192 evls1rhm 22242 evl1rhm 22252 evl1expd 22265 evls1maplmhm 22297 mat0 22337 matinvg 22338 matlmod 22349 scmatsrng1 22443 1mavmul 22468 mat2pmatmul 22651 ressprdsds 24292 nmpropd 24515 tng0 24564 tngngp2 24573 tnggrpr 24576 tngnrg 24595 sranlm 24605 pi1addval 24981 cvsi 25063 tcphphl 25160 abvpropd2 32937 resv0g 33303 resvcmn 33305 sra1r 33570 sradrng 33571 sraidom 33572 srasubrg 33573 drgextlsp 33582 tnglvec 33601 tngdim 33602 matdim 33604 fedgmullem2 33619 fldextrspunfld 33664 zhmnrg 33948 prdsbnd 37780 prdstotbnd 37781 prdsbnd2 37782 erngdvlem3 40977 erngdvlem3-rN 40985 hlhils0 41932 hlhils1N 41933 hlhillvec 41938 hlhildrng 41939 hlhil0 41942 hlhillsm 41943 zndvdchrrhm 41953 isprimroot 42074 primrootsunit1 42078 mendval 43161 mnring0gd 44203 mnringlmodd 44208 ovmpt4d 48846 upfval 49158 prcofvalg 49358 |
| Copyright terms: Public domain | W3C validator |