Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7292 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 481 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: fullresc 17566 fucpropd 17695 resssetc 17807 resscatc 17824 issstrmgm 18337 gsumpropd 18362 grpsubpropd 18680 sylow2blem2 19226 isringd 19824 prdsringd 19851 prdscrngd 19852 prds1 19853 pwsco1rhm 19982 pwsco2rhm 19983 pwsdiagrhm 20058 primefld 20073 sralmod 20457 sralmod0 20458 issubrngd2 20459 isdomn 20565 znzrh 20750 zncrng 20752 phlssphl 20864 sraassa 21074 opsrcrng 21266 opsrassa 21267 ply1lss 21367 ply1subrg 21368 opsr0 21389 opsr1 21390 subrgply1 21404 opsrring 21416 opsrlmod 21417 ply1mpl0 21426 ply1mpl1 21428 ply1ascl 21429 coe1tm 21444 evls1rhm 21488 evl1rhm 21498 evl1expd 21511 mat0 21566 matinvg 21567 matlmod 21578 scmatsrng1 21672 1mavmul 21697 mat2pmatmul 21880 ressprdsds 23524 nmpropd 23750 tng0 23802 tngngp2 23816 tnggrpr 23819 tngnrg 23838 sranlm 23848 pi1addval 24211 cvsi 24293 tcphphl 24391 istrkgc 26815 istrkgb 26816 abvpropd2 31237 resv0g 31540 resvcmn 31542 sra1r 31671 sraring 31672 sradrng 31673 srasubrg 31674 drgextlsp 31681 tnglvec 31695 tngdim 31696 matdim 31698 fedgmullem2 31711 zhmnrg 31917 prdsbnd 35951 prdstotbnd 35952 prdsbnd2 35953 erngdvlem3 39004 erngdvlem3-rN 39012 hlhils0 39963 hlhils1N 39964 hlhillvec 39969 hlhildrng 39970 hlhil0 39973 hlhillsm 39974 mendval 41008 mnring0gd 41837 mnringlmodd 41844 issubmgm2 45344 rnghmval 45449 lidlmmgm 45483 rnghmsubcsetclem1 45533 rnghmsubcsetclem2 45534 rngcifuestrc 45555 rhmsubcsetclem1 45579 rhmsubcsetclem2 45580 rhmsubcrngclem1 45585 rhmsubcrngclem2 45586 |
Copyright terms: Public domain | W3C validator |