| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: fullresc 17820 fucpropd 17949 resssetc 18061 resscatc 18078 issstrmgm 18587 gsumpropd 18612 issubmgm2 18637 grpsubpropd 18984 sylow2blem2 19558 isrngd 20089 prdsrngd 20092 isringd 20207 prdsringd 20237 prdscrngd 20238 prds1 20239 rnghmval 20356 pwsco1rhm 20418 pwsco2rhm 20419 pwsdiagrhm 20523 rnghmsubcsetclem1 20547 rnghmsubcsetclem2 20548 rngcifuestrc 20555 rhmsubcsetclem1 20576 rhmsubcsetclem2 20577 rhmsubcrngclem1 20582 rhmsubcrngclem2 20583 isdomn 20621 primefld 20721 sraring 21100 sralmod 21101 sralmod0 21102 issubrgd 21103 znzrh 21459 zncrng 21461 phlssphl 21575 sraassaOLD 21786 opsrcrng 21973 opsrassa 21974 ply1lss 22088 ply1subrg 22089 opsr0 22110 opsr1 22111 subrgply1 22124 opsrring 22136 opsrlmod 22137 ply1mpl0 22148 ply1mpl1 22150 ply1ascl 22151 coe1tm 22166 evls1rhm 22216 evl1rhm 22226 evl1expd 22239 evls1maplmhm 22271 mat0 22311 matinvg 22312 matlmod 22323 scmatsrng1 22417 1mavmul 22442 mat2pmatmul 22625 ressprdsds 24266 nmpropd 24489 tng0 24538 tngngp2 24547 tnggrpr 24550 tngnrg 24569 sranlm 24579 pi1addval 24955 cvsi 25037 tcphphl 25134 abvpropd2 32894 resv0g 33317 resvcmn 33319 sra1r 33584 sradrng 33585 sraidom 33586 srasubrg 33587 drgextlsp 33596 tnglvec 33615 tngdim 33616 matdim 33618 fedgmullem2 33633 fldextrspunfld 33678 zhmnrg 33962 prdsbnd 37794 prdstotbnd 37795 prdsbnd2 37796 erngdvlem3 40991 erngdvlem3-rN 40999 hlhils0 41946 hlhils1N 41947 hlhillvec 41952 hlhildrng 41953 hlhil0 41956 hlhillsm 41957 zndvdchrrhm 41967 isprimroot 42088 primrootsunit1 42092 mendval 43175 mnring0gd 44217 mnringlmodd 44222 ovmpt4d 48857 upfval 49169 prcofvalg 49369 |
| Copyright terms: Public domain | W3C validator |