| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: fullresc 17813 fucpropd 17942 resssetc 18054 resscatc 18071 issstrmgm 18580 gsumpropd 18605 issubmgm2 18630 grpsubpropd 18977 sylow2blem2 19551 isrngd 20082 prdsrngd 20085 isringd 20200 prdsringd 20230 prdscrngd 20231 prds1 20232 rnghmval 20349 pwsco1rhm 20411 pwsco2rhm 20412 pwsdiagrhm 20516 rnghmsubcsetclem1 20540 rnghmsubcsetclem2 20541 rngcifuestrc 20548 rhmsubcsetclem1 20569 rhmsubcsetclem2 20570 rhmsubcrngclem1 20575 rhmsubcrngclem2 20576 isdomn 20614 primefld 20714 sraring 21093 sralmod 21094 sralmod0 21095 issubrgd 21096 znzrh 21452 zncrng 21454 phlssphl 21568 sraassaOLD 21779 opsrcrng 21966 opsrassa 21967 ply1lss 22081 ply1subrg 22082 opsr0 22103 opsr1 22104 subrgply1 22117 opsrring 22129 opsrlmod 22130 ply1mpl0 22141 ply1mpl1 22143 ply1ascl 22144 coe1tm 22159 evls1rhm 22209 evl1rhm 22219 evl1expd 22232 evls1maplmhm 22264 mat0 22304 matinvg 22305 matlmod 22316 scmatsrng1 22410 1mavmul 22435 mat2pmatmul 22618 ressprdsds 24259 nmpropd 24482 tng0 24531 tngngp2 24540 tnggrpr 24543 tngnrg 24562 sranlm 24572 pi1addval 24948 cvsi 25030 tcphphl 25127 abvpropd2 32887 resv0g 33310 resvcmn 33312 sra1r 33577 sradrng 33578 sraidom 33579 srasubrg 33580 drgextlsp 33589 tnglvec 33608 tngdim 33609 matdim 33611 fedgmullem2 33626 fldextrspunfld 33671 zhmnrg 33955 prdsbnd 37787 prdstotbnd 37788 prdsbnd2 37789 erngdvlem3 40984 erngdvlem3-rN 40992 hlhils0 41939 hlhils1N 41940 hlhillvec 41945 hlhildrng 41946 hlhil0 41949 hlhillsm 41950 zndvdchrrhm 41960 isprimroot 42081 primrootsunit1 42085 mendval 43168 mnring0gd 44210 mnringlmodd 44215 ovmpt4d 48853 upfval 49165 prcofvalg 49365 |
| Copyright terms: Public domain | W3C validator |