![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveqdr | Structured version Visualization version GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 7465 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 480 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: fullresc 17915 fucpropd 18047 resssetc 18159 resscatc 18176 issstrmgm 18691 gsumpropd 18716 issubmgm2 18741 grpsubpropd 19085 sylow2blem2 19663 isrngd 20200 prdsrngd 20203 isringd 20314 prdsringd 20344 prdscrngd 20345 prds1 20346 rnghmval 20466 pwsco1rhm 20528 pwsco2rhm 20529 pwsdiagrhm 20635 rnghmsubcsetclem1 20653 rnghmsubcsetclem2 20654 rngcifuestrc 20661 rhmsubcsetclem1 20682 rhmsubcsetclem2 20683 rhmsubcrngclem1 20688 rhmsubcrngclem2 20689 isdomn 20727 primefld 20828 sraring 21216 sralmod 21217 sralmod0 21218 issubrgd 21219 znzrh 21584 zncrng 21586 phlssphl 21700 sraassaOLD 21913 opsrcrng 22106 opsrassa 22107 ply1lss 22219 ply1subrg 22220 opsr0 22241 opsr1 22242 subrgply1 22255 opsrring 22267 opsrlmod 22268 ply1mpl0 22279 ply1mpl1 22281 ply1ascl 22282 coe1tm 22297 evls1rhm 22347 evl1rhm 22357 evl1expd 22370 evls1maplmhm 22402 mat0 22444 matinvg 22445 matlmod 22456 scmatsrng1 22550 1mavmul 22575 mat2pmatmul 22758 ressprdsds 24402 nmpropd 24628 tng0 24680 tngngp2 24694 tnggrpr 24697 tngnrg 24716 sranlm 24726 pi1addval 25100 cvsi 25182 tcphphl 25280 abvpropd2 32932 resv0g 33332 resvcmn 33334 sra1r 33597 sradrng 33598 srasubrg 33599 drgextlsp 33608 tnglvec 33625 tngdim 33626 matdim 33628 fedgmullem2 33643 zhmnrg 33913 prdsbnd 37753 prdstotbnd 37754 prdsbnd2 37755 erngdvlem3 40947 erngdvlem3-rN 40955 hlhils0 41906 hlhils1N 41907 hlhillvec 41912 hlhildrng 41913 hlhil0 41916 hlhillsm 41917 zndvdchrrhm 41927 isprimroot 42050 primrootsunit1 42054 mendval 43140 mnring0gd 44188 mnringlmodd 44195 |
Copyright terms: Public domain | W3C validator |