![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmzbi | Structured version Visualization version GIF version |
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
Ref | Expression |
---|---|
nmzbi | ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnmz.1 | . . . 4 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
2 | 1 | elnmz 19203 | . . 3 ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)) |
4 | oveq2 7456 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵)) | |
5 | 4 | eleq1d 2829 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆)) |
6 | oveq1 7455 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝐴) = (𝐵 + 𝐴)) | |
7 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
8 | 5, 7 | bibi12d 345 | . . 3 ⊢ (𝑧 = 𝐵 → (((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
9 | 8 | rspccva 3634 | . 2 ⊢ ((∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
10 | 3, 9 | sylan 579 | 1 ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: nmzsubg 19205 nmznsg 19208 conjnmz 19292 |
Copyright terms: Public domain | W3C validator |