MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzbi Structured version   Visualization version   GIF version

Theorem nmzbi 18837
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
Assertion
Ref Expression
nmzbi ((𝐴𝑁𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑆   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem nmzbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
21elnmz 18836 . . 3 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
32simprbi 498 . 2 (𝐴𝑁 → ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))
4 oveq2 7315 . . . . 5 (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵))
54eleq1d 2821 . . . 4 (𝑧 = 𝐵 → ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆))
6 oveq1 7314 . . . . 5 (𝑧 = 𝐵 → (𝑧 + 𝐴) = (𝐵 + 𝐴))
76eleq1d 2821 . . . 4 (𝑧 = 𝐵 → ((𝑧 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
85, 7bibi12d 346 . . 3 (𝑧 = 𝐵 → (((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
98rspccva 3565 . 2 ((∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ∧ 𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
103, 9sylan 581 1 ((𝐴𝑁𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  {crab 3284  (class class class)co 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310
This theorem is referenced by:  nmzsubg  18838  nmznsg  18841  conjnmz  18913
  Copyright terms: Public domain W3C validator