![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmzbi | Structured version Visualization version GIF version |
Description: Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
Ref | Expression |
---|---|
nmzbi | ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnmz.1 | . . . 4 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
2 | 1 | elnmz 19086 | . . 3 ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)) |
4 | oveq2 7410 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵)) | |
5 | 4 | eleq1d 2810 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆)) |
6 | oveq1 7409 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 + 𝐴) = (𝐵 + 𝐴)) | |
7 | 6 | eleq1d 2810 | . . . 4 ⊢ (𝑧 = 𝐵 → ((𝑧 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
8 | 5, 7 | bibi12d 345 | . . 3 ⊢ (𝑧 = 𝐵 → (((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))) |
9 | 8 | rspccva 3603 | . 2 ⊢ ((∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆) ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
10 | 3, 9 | sylan 579 | 1 ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 {crab 3424 (class class class)co 7402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-ov 7405 |
This theorem is referenced by: nmzsubg 19088 nmznsg 19091 conjnmz 19173 |
Copyright terms: Public domain | W3C validator |