![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmznsg | Structured version Visualization version GIF version |
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
nmzsubg.2 | ⊢ 𝑋 = (Base‘𝐺) |
nmzsubg.3 | ⊢ + = (+g‘𝐺) |
nmznsg.4 | ⊢ 𝐻 = (𝐺 ↾s 𝑁) |
Ref | Expression |
---|---|
nmznsg | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | elnmz.1 | . . . 4 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
3 | nmzsubg.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
4 | nmzsubg.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
5 | 2, 3, 4 | ssnmz 19089 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |
6 | subgrcl 19054 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
7 | 2, 3, 4 | nmzsubg 19088 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
9 | nmznsg.4 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑁) | |
10 | 9 | subsubg 19072 | . . . 4 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
12 | 1, 5, 11 | mpbir2and 710 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻)) |
13 | 2 | ssrab3 4080 | . . . . . 6 ⊢ 𝑁 ⊆ 𝑋 |
14 | 13 | sseli 3978 | . . . . 5 ⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
15 | 2 | nmzbi 19087 | . . . . 5 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
17 | 16 | rgen2 3196 | . . 3 ⊢ ∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) |
18 | 9 | subgbas 19053 | . . . . 5 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
19 | 8, 18 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
20 | 19 | raleqdv 3324 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
21 | 19, 20 | raleqbidv 3341 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
22 | 17, 21 | mpbii 232 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
23 | eqid 2731 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
24 | 3 | fvexi 6905 | . . . . 5 ⊢ 𝑋 ∈ V |
25 | 24, 13 | ssexi 5322 | . . . 4 ⊢ 𝑁 ∈ V |
26 | 9, 4 | ressplusg 17242 | . . . 4 ⊢ (𝑁 ∈ V → + = (+g‘𝐻)) |
27 | 25, 26 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐻) |
28 | 23, 27 | isnsg 19078 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
29 | 12, 22, 28 | sylanbrc 582 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 Vcvv 3473 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 ↾s cress 17180 +gcplusg 17204 Grpcgrp 18861 SubGrpcsubg 19043 NrmSGrpcnsg 19044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-nsg 19047 |
This theorem is referenced by: sylow3lem4 19546 sylow3lem6 19548 |
Copyright terms: Public domain | W3C validator |