| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmznsg | Structured version Visualization version GIF version | ||
| Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| nmzsubg.2 | ⊢ 𝑋 = (Base‘𝐺) |
| nmzsubg.3 | ⊢ + = (+g‘𝐺) |
| nmznsg.4 | ⊢ 𝐻 = (𝐺 ↾s 𝑁) |
| Ref | Expression |
|---|---|
| nmznsg | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | elnmz.1 | . . . 4 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
| 3 | nmzsubg.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | nmzsubg.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 5 | 2, 3, 4 | ssnmz 19045 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |
| 6 | subgrcl 19010 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 7 | 2, 3, 4 | nmzsubg 19044 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 9 | nmznsg.4 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑁) | |
| 10 | 9 | subsubg 19028 | . . . 4 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
| 12 | 1, 5, 11 | mpbir2and 713 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻)) |
| 13 | 2 | ssrab3 4033 | . . . . . 6 ⊢ 𝑁 ⊆ 𝑋 |
| 14 | 13 | sseli 3931 | . . . . 5 ⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
| 15 | 2 | nmzbi 19043 | . . . . 5 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 16 | 14, 15 | sylan2 593 | . . . 4 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 17 | 16 | rgen2 3169 | . . 3 ⊢ ∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) |
| 18 | 9 | subgbas 19009 | . . . . 5 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
| 19 | 8, 18 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
| 20 | 19 | raleqdv 3289 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 21 | 19, 20 | raleqbidv 3309 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 22 | 17, 21 | mpbii 233 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 23 | eqid 2729 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 24 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝑋 ∈ V |
| 25 | 24, 13 | ssexi 5261 | . . . 4 ⊢ 𝑁 ∈ V |
| 26 | 9, 4 | ressplusg 17195 | . . . 4 ⊢ (𝑁 ∈ V → + = (+g‘𝐻)) |
| 27 | 25, 26 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐻) |
| 28 | 23, 27 | isnsg 19034 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 29 | 12, 22, 28 | sylanbrc 583 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Grpcgrp 18812 SubGrpcsubg 18999 NrmSGrpcnsg 19000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-nsg 19003 |
| This theorem is referenced by: sylow3lem4 19509 sylow3lem6 19511 |
| Copyright terms: Public domain | W3C validator |