| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmznsg | Structured version Visualization version GIF version | ||
| Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| nmzsubg.2 | ⊢ 𝑋 = (Base‘𝐺) |
| nmzsubg.3 | ⊢ + = (+g‘𝐺) |
| nmznsg.4 | ⊢ 𝐻 = (𝐺 ↾s 𝑁) |
| Ref | Expression |
|---|---|
| nmznsg | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | elnmz.1 | . . . 4 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
| 3 | nmzsubg.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 4 | nmzsubg.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 5 | 2, 3, 4 | ssnmz 19149 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) |
| 6 | subgrcl 19114 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 7 | 2, 3, 4 | nmzsubg 19148 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
| 9 | nmznsg.4 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑁) | |
| 10 | 9 | subsubg 19132 | . . . 4 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑁))) |
| 12 | 1, 5, 11 | mpbir2and 713 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻)) |
| 13 | 2 | ssrab3 4057 | . . . . . 6 ⊢ 𝑁 ⊆ 𝑋 |
| 14 | 13 | sseli 3954 | . . . . 5 ⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
| 15 | 2 | nmzbi 19147 | . . . . 5 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 16 | 14, 15 | sylan2 593 | . . . 4 ⊢ ((𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 17 | 16 | rgen2 3184 | . . 3 ⊢ ∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) |
| 18 | 9 | subgbas 19113 | . . . . 5 ⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
| 19 | 8, 18 | syl 17 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻)) |
| 20 | 19 | raleqdv 3305 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 21 | 19, 20 | raleqbidv 3325 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧 ∈ 𝑁 ∀𝑤 ∈ 𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 22 | 17, 21 | mpbii 233 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) |
| 23 | eqid 2735 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 24 | 3 | fvexi 6890 | . . . . 5 ⊢ 𝑋 ∈ V |
| 25 | 24, 13 | ssexi 5292 | . . . 4 ⊢ 𝑁 ∈ V |
| 26 | 9, 4 | ressplusg 17305 | . . . 4 ⊢ (𝑁 ∈ V → + = (+g‘𝐻)) |
| 27 | 25, 26 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝐻) |
| 28 | 23, 27 | isnsg 19138 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))) |
| 29 | 12, 22, 28 | sylanbrc 583 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 Grpcgrp 18916 SubGrpcsubg 19103 NrmSGrpcnsg 19104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-nsg 19107 |
| This theorem is referenced by: sylow3lem4 19611 sylow3lem6 19613 |
| Copyright terms: Public domain | W3C validator |