MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Visualization version   GIF version

Theorem nmzsubg 18889
Description: The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
nmzsubg (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem nmzsubg
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
21ssrab3 4027 . . 3 𝑁𝑋
32a1i 11 . 2 (𝐺 ∈ Grp → 𝑁𝑋)
4 nmzsubg.2 . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2736 . . . . 5 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18703 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
7 nmzsubg.3 . . . . . . . 8 + = (+g𝐺)
84, 7, 5grplid 18705 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
94, 7, 5grprid 18706 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + (0g𝐺)) = 𝑧)
108, 9eqtr4d 2779 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = (𝑧 + (0g𝐺)))
1110eleq1d 2821 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
1211ralrimiva 3139 . . . 4 (𝐺 ∈ Grp → ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
131elnmz 18887 . . . 4 ((0g𝐺) ∈ 𝑁 ↔ ((0g𝐺) ∈ 𝑋 ∧ ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆)))
146, 12, 13sylanbrc 583 . . 3 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑁)
1514ne0d 4282 . 2 (𝐺 ∈ Grp → 𝑁 ≠ ∅)
16 id 22 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
172sseli 3928 . . . . . . . 8 (𝑧𝑁𝑧𝑋)
182sseli 3928 . . . . . . . 8 (𝑤𝑁𝑤𝑋)
194, 7grpcl 18681 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧 + 𝑤) ∈ 𝑋)
2016, 17, 18, 19syl3an 1159 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑋)
21 simpl1 1190 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
22 simpl2 1191 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
232, 22sselid 3930 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
24 simpl3 1192 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑁)
252, 24sselid 3930 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑋)
26 simpr 485 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
274, 7grpass 18682 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑤𝑋𝑢𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2821, 23, 25, 26, 27syl13anc 1371 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2928eleq1d 2821 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆))
304, 7grpcl 18681 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
3121, 25, 26, 30syl3anc 1370 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
321nmzbi 18888 . . . . . . . . . . 11 ((𝑧𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
3322, 31, 32syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
344, 7grpass 18682 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑤𝑋𝑢𝑋𝑧𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3521, 25, 26, 23, 34syl13anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3635eleq1d 2821 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆))
374, 7grpcl 18681 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑧𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
3821, 26, 23, 37syl3anc 1370 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
391nmzbi 18888 . . . . . . . . . . 11 ((𝑤𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4024, 38, 39syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4133, 36, 403bitrd 304 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
424, 7grpass 18682 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑤𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4321, 26, 23, 25, 42syl13anc 1371 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4443eleq1d 2821 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4529, 41, 443bitrd 304 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4645ralrimiva 3139 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
471elnmz 18887 . . . . . . 7 ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)))
4820, 46, 47sylanbrc 583 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
49483expa 1117 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
5049ralrimiva 3139 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁)
51 eqid 2736 . . . . . . 7 (invg𝐺) = (invg𝐺)
524, 51grpinvcl 18723 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5317, 52sylan2 593 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑋)
54 simplr 766 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
55 simpll 764 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
5653adantr 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
57 simpr 485 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
584, 7grpcl 18681 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
5955, 57, 56, 58syl3anc 1370 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
604, 7grpcl 18681 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
6155, 56, 59, 60syl3anc 1370 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
621nmzbi 18888 . . . . . . . 8 ((𝑧𝑁 ∧ (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
6354, 61, 62syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
642, 54sselid 3930 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
654, 7, 5, 51grprinv 18725 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6655, 64, 65syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6766oveq1d 7352 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))))
684, 7grpass 18682 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑧𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
6955, 64, 56, 59, 68syl13anc 1371 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
704, 7, 5grplid 18705 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7155, 59, 70syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7267, 69, 713eqtr3d 2784 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) = (𝑢 + ((invg𝐺)‘𝑧)))
7372eleq1d 2821 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
744, 7grpass 18682 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋𝑧𝑋)) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
7555, 56, 59, 64, 74syl13anc 1371 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
764, 7grpass 18682 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
7755, 57, 56, 64, 76syl13anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
784, 7, 5, 51grplinv 18724 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
7955, 64, 78syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
8079oveq2d 7353 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g𝐺)))
814, 7, 5grprid 18706 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8255, 57, 81syl2anc 584 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8377, 80, 823eqtrd 2780 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = 𝑢)
8483oveq2d 7353 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)) = (((invg𝐺)‘𝑧) + 𝑢))
8575, 84eqtrd 2776 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + 𝑢))
8685eleq1d 2821 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆))
8763, 73, 863bitr3rd 309 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
8887ralrimiva 3139 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
891elnmz 18887 . . . . 5 (((invg𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆)))
9053, 88, 89sylanbrc 583 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑁)
9150, 90jca 512 . . 3 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
9291ralrimiva 3139 . 2 (𝐺 ∈ Grp → ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
934, 7, 51issubg2 18866 . 2 (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁𝑋𝑁 ≠ ∅ ∧ ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))))
943, 15, 92, 93mpbir3and 1341 1 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  {crab 3403  wss 3898  c0 4269  cfv 6479  (class class class)co 7337  Basecbs 17009  +gcplusg 17059  0gc0g 17247  Grpcgrp 18673  invgcminusg 18674  SubGrpcsubg 18845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-subg 18848
This theorem is referenced by:  nmznsg  18892  sylow3lem3  19330  sylow3lem4  19331  sylow3lem6  19333
  Copyright terms: Public domain W3C validator