MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Visualization version   GIF version

Theorem nmzsubg 18309
Description: The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
nmzsubg (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem nmzsubg
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
21ssrab3 4008 . . 3 𝑁𝑋
32a1i 11 . 2 (𝐺 ∈ Grp → 𝑁𝑋)
4 nmzsubg.2 . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2798 . . . . 5 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18123 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
7 nmzsubg.3 . . . . . . . 8 + = (+g𝐺)
84, 7, 5grplid 18125 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
94, 7, 5grprid 18126 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + (0g𝐺)) = 𝑧)
108, 9eqtr4d 2836 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = (𝑧 + (0g𝐺)))
1110eleq1d 2874 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
1211ralrimiva 3149 . . . 4 (𝐺 ∈ Grp → ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
131elnmz 18307 . . . 4 ((0g𝐺) ∈ 𝑁 ↔ ((0g𝐺) ∈ 𝑋 ∧ ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆)))
146, 12, 13sylanbrc 586 . . 3 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑁)
1514ne0d 4251 . 2 (𝐺 ∈ Grp → 𝑁 ≠ ∅)
16 id 22 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
172sseli 3911 . . . . . . . 8 (𝑧𝑁𝑧𝑋)
182sseli 3911 . . . . . . . 8 (𝑤𝑁𝑤𝑋)
194, 7grpcl 18103 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧 + 𝑤) ∈ 𝑋)
2016, 17, 18, 19syl3an 1157 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑋)
21 simpl1 1188 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
22 simpl2 1189 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
232, 22sseldi 3913 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
24 simpl3 1190 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑁)
252, 24sseldi 3913 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑋)
26 simpr 488 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
274, 7grpass 18104 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑤𝑋𝑢𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2821, 23, 25, 26, 27syl13anc 1369 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2928eleq1d 2874 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆))
304, 7grpcl 18103 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
3121, 25, 26, 30syl3anc 1368 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
321nmzbi 18308 . . . . . . . . . . 11 ((𝑧𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
3322, 31, 32syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
344, 7grpass 18104 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑤𝑋𝑢𝑋𝑧𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3521, 25, 26, 23, 34syl13anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3635eleq1d 2874 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆))
374, 7grpcl 18103 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑧𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
3821, 26, 23, 37syl3anc 1368 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
391nmzbi 18308 . . . . . . . . . . 11 ((𝑤𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4024, 38, 39syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4133, 36, 403bitrd 308 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
424, 7grpass 18104 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑤𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4321, 26, 23, 25, 42syl13anc 1369 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4443eleq1d 2874 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4529, 41, 443bitrd 308 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4645ralrimiva 3149 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
471elnmz 18307 . . . . . . 7 ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)))
4820, 46, 47sylanbrc 586 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
49483expa 1115 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
5049ralrimiva 3149 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁)
51 eqid 2798 . . . . . . 7 (invg𝐺) = (invg𝐺)
524, 51grpinvcl 18143 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5317, 52sylan2 595 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑋)
54 simplr 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
55 simpll 766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
5653adantr 484 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
57 simpr 488 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
584, 7grpcl 18103 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
5955, 57, 56, 58syl3anc 1368 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
604, 7grpcl 18103 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
6155, 56, 59, 60syl3anc 1368 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
621nmzbi 18308 . . . . . . . 8 ((𝑧𝑁 ∧ (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
6354, 61, 62syl2anc 587 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
642, 54sseldi 3913 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
654, 7, 5, 51grprinv 18145 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6655, 64, 65syl2anc 587 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6766oveq1d 7150 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))))
684, 7grpass 18104 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑧𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
6955, 64, 56, 59, 68syl13anc 1369 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
704, 7, 5grplid 18125 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7155, 59, 70syl2anc 587 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7267, 69, 713eqtr3d 2841 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) = (𝑢 + ((invg𝐺)‘𝑧)))
7372eleq1d 2874 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
744, 7grpass 18104 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋𝑧𝑋)) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
7555, 56, 59, 64, 74syl13anc 1369 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
764, 7grpass 18104 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
7755, 57, 56, 64, 76syl13anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
784, 7, 5, 51grplinv 18144 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
7955, 64, 78syl2anc 587 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
8079oveq2d 7151 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g𝐺)))
814, 7, 5grprid 18126 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8255, 57, 81syl2anc 587 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8377, 80, 823eqtrd 2837 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = 𝑢)
8483oveq2d 7151 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)) = (((invg𝐺)‘𝑧) + 𝑢))
8575, 84eqtrd 2833 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + 𝑢))
8685eleq1d 2874 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆))
8763, 73, 863bitr3rd 313 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
8887ralrimiva 3149 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
891elnmz 18307 . . . . 5 (((invg𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆)))
9053, 88, 89sylanbrc 586 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑁)
9150, 90jca 515 . . 3 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
9291ralrimiva 3149 . 2 (𝐺 ∈ Grp → ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
934, 7, 51issubg2 18286 . 2 (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁𝑋𝑁 ≠ ∅ ∧ ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))))
943, 15, 92, 93mpbir3and 1339 1 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  wss 3881  c0 4243  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  SubGrpcsubg 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268
This theorem is referenced by:  nmznsg  18312  sylow3lem3  18746  sylow3lem4  18747  sylow3lem6  18749
  Copyright terms: Public domain W3C validator