Step | Hyp | Ref
| Expression |
1 | | elnmz.1 |
. . . 4
⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
2 | 1 | ssrab3 4019 |
. . 3
⊢ 𝑁 ⊆ 𝑋 |
3 | 2 | a1i 11 |
. 2
⊢ (𝐺 ∈ Grp → 𝑁 ⊆ 𝑋) |
4 | | nmzsubg.2 |
. . . . 5
⊢ 𝑋 = (Base‘𝐺) |
5 | | eqid 2739 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
6 | 4, 5 | grpidcl 18588 |
. . . 4
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
7 | | nmzsubg.3 |
. . . . . . . 8
⊢ + =
(+g‘𝐺) |
8 | 4, 7, 5 | grplid 18590 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = 𝑧) |
9 | 4, 7, 5 | grprid 18591 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 + (0g‘𝐺)) = 𝑧) |
10 | 8, 9 | eqtr4d 2782 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = (𝑧 + (0g‘𝐺))) |
11 | 10 | eleq1d 2824 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
12 | 11 | ralrimiva 3109 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆)) |
13 | 1 | elnmz 18772 |
. . . 4
⊢
((0g‘𝐺) ∈ 𝑁 ↔ ((0g‘𝐺) ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 (((0g‘𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g‘𝐺)) ∈ 𝑆))) |
14 | 6, 12, 13 | sylanbrc 582 |
. . 3
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑁) |
15 | 14 | ne0d 4274 |
. 2
⊢ (𝐺 ∈ Grp → 𝑁 ≠ ∅) |
16 | | id 22 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Grp) |
17 | 2 | sseli 3921 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑁 → 𝑧 ∈ 𝑋) |
18 | 2 | sseli 3921 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋) |
19 | 4, 7 | grpcl 18566 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑧 + 𝑤) ∈ 𝑋) |
20 | 16, 17, 18, 19 | syl3an 1158 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑋) |
21 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
22 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
23 | 2, 22 | sselid 3923 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
24 | | simpl3 1191 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑁) |
25 | 2, 24 | sselid 3923 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑤 ∈ 𝑋) |
26 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
27 | 4, 7 | grpass 18567 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
28 | 21, 23, 25, 26, 27 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢))) |
29 | 28 | eleq1d 2824 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆)) |
30 | 4, 7 | grpcl 18566 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
31 | 21, 25, 26, 30 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑤 + 𝑢) ∈ 𝑋) |
32 | 1 | nmzbi 18773 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
33 | 22, 31, 32 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆)) |
34 | 4, 7 | grpass 18567 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑤 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
35 | 21, 25, 26, 23, 34 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧))) |
36 | 35 | eleq1d 2824 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆)) |
37 | 4, 7 | grpcl 18566 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑢 + 𝑧) ∈ 𝑋) |
38 | 21, 26, 23, 37 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + 𝑧) ∈ 𝑋) |
39 | 1 | nmzbi 18773 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ 𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
40 | 24, 38, 39 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
41 | 33, 36, 40 | 3bitrd 304 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆)) |
42 | 4, 7 | grpass 18567 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
43 | 21, 26, 23, 25, 42 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤))) |
44 | 43 | eleq1d 2824 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
45 | 29, 41, 44 | 3bitrd 304 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
46 | 45 | ralrimiva 3109 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)) |
47 | 1 | elnmz 18772 |
. . . . . . 7
⊢ ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))) |
48 | 20, 46, 47 | sylanbrc 582 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
49 | 48 | 3expa 1116 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑤 ∈ 𝑁) → (𝑧 + 𝑤) ∈ 𝑁) |
50 | 49 | ralrimiva 3109 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁) |
51 | | eqid 2739 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
52 | 4, 51 | grpinvcl 18608 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
53 | 17, 52 | sylan2 592 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
54 | | simplr 765 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑁) |
55 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝐺 ∈ Grp) |
56 | 53 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((invg‘𝐺)‘𝑧) ∈ 𝑋) |
57 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑢 ∈ 𝑋) |
58 | 4, 7 | grpcl 18566 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋) → (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) |
59 | 55, 57, 56, 58 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) |
60 | 4, 7 | grpcl 18566 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) |
61 | 55, 56, 59, 60 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) |
62 | 1 | nmzbi 18773 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
63 | 54, 61, 62 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆)) |
64 | 2, 54 | sselid 3923 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
65 | 4, 7, 5, 51 | grprinv 18610 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
66 | 55, 64, 65 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
((invg‘𝐺)‘𝑧)) = (0g‘𝐺)) |
67 | 66 | oveq1d 7283 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧)))) |
68 | 4, 7 | grpass 18567 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑧 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
69 | 55, 64, 56, 59, 68 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
((invg‘𝐺)‘𝑧)) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))))) |
70 | 4, 7, 5 | grplid 18590 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
71 | 55, 59, 70 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((0g‘𝐺) + (𝑢 +
((invg‘𝐺)‘𝑧))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
72 | 67, 69, 71 | 3eqtr3d 2787 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) = (𝑢 +
((invg‘𝐺)‘𝑧))) |
73 | 72 | eleq1d 2824 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑧 +
(((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
74 | 4, 7 | grpass 18567 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
75 | 55, 56, 59, 64, 74 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧))) |
76 | 4, 7 | grpass 18567 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
77 | 55, 57, 56, 64, 76 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧))) |
78 | 4, 7, 5, 51 | grplinv 18609 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
79 | 55, 64, 78 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + 𝑧) = (0g‘𝐺)) |
80 | 79 | oveq2d 7284 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 +
(((invg‘𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g‘𝐺))) |
81 | 4, 7, 5 | grprid 18591 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
82 | 55, 57, 81 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (𝑢 + (0g‘𝐺)) = 𝑢) |
83 | 77, 80, 82 | 3eqtrd 2783 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧) = 𝑢) |
84 | 83 | oveq2d 7284 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((invg‘𝐺)‘𝑧) + ((𝑢 +
((invg‘𝐺)‘𝑧)) + 𝑧)) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
85 | 75, 84 | eqtrd 2779 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) = (((invg‘𝐺)‘𝑧) + 𝑢)) |
86 | 85 | eleq1d 2824 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → (((((invg‘𝐺)‘𝑧) + (𝑢 +
((invg‘𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆)) |
87 | 63, 73, 86 | 3bitr3rd 309 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) ∧ 𝑢 ∈ 𝑋) → ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
88 | 87 | ralrimiva 3109 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆)) |
89 | 1 | elnmz 18772 |
. . . . 5
⊢
(((invg‘𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg‘𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑋 ((((invg‘𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 +
((invg‘𝐺)‘𝑧)) ∈ 𝑆))) |
90 | 53, 88, 89 | sylanbrc 582 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → ((invg‘𝐺)‘𝑧) ∈ 𝑁) |
91 | 50, 90 | jca 511 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑁) → (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
92 | 91 | ralrimiva 3109 |
. 2
⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)) |
93 | 4, 7, 51 | issubg2 18751 |
. 2
⊢ (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁 ⊆ 𝑋 ∧ 𝑁 ≠ ∅ ∧ ∀𝑧 ∈ 𝑁 (∀𝑤 ∈ 𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg‘𝐺)‘𝑧) ∈ 𝑁)))) |
94 | 3, 15, 92, 93 | mpbir3and 1340 |
1
⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) |