MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmzsubg Structured version   Visualization version   GIF version

Theorem nmzsubg 18774
Description: The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
Assertion
Ref Expression
nmzsubg (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem nmzsubg
Dummy variables 𝑧 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
21ssrab3 4019 . . 3 𝑁𝑋
32a1i 11 . 2 (𝐺 ∈ Grp → 𝑁𝑋)
4 nmzsubg.2 . . . . 5 𝑋 = (Base‘𝐺)
5 eqid 2739 . . . . 5 (0g𝐺) = (0g𝐺)
64, 5grpidcl 18588 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
7 nmzsubg.3 . . . . . . . 8 + = (+g𝐺)
84, 7, 5grplid 18590 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
94, 7, 5grprid 18591 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + (0g𝐺)) = 𝑧)
108, 9eqtr4d 2782 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = (𝑧 + (0g𝐺)))
1110eleq1d 2824 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
1211ralrimiva 3109 . . . 4 (𝐺 ∈ Grp → ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆))
131elnmz 18772 . . . 4 ((0g𝐺) ∈ 𝑁 ↔ ((0g𝐺) ∈ 𝑋 ∧ ∀𝑧𝑋 (((0g𝐺) + 𝑧) ∈ 𝑆 ↔ (𝑧 + (0g𝐺)) ∈ 𝑆)))
146, 12, 13sylanbrc 582 . . 3 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑁)
1514ne0d 4274 . 2 (𝐺 ∈ Grp → 𝑁 ≠ ∅)
16 id 22 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
172sseli 3921 . . . . . . . 8 (𝑧𝑁𝑧𝑋)
182sseli 3921 . . . . . . . 8 (𝑤𝑁𝑤𝑋)
194, 7grpcl 18566 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝑤𝑋) → (𝑧 + 𝑤) ∈ 𝑋)
2016, 17, 18, 19syl3an 1158 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑋)
21 simpl1 1189 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
22 simpl2 1190 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
232, 22sselid 3923 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
24 simpl3 1191 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑁)
252, 24sselid 3923 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑤𝑋)
26 simpr 484 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
274, 7grpass 18567 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑧𝑋𝑤𝑋𝑢𝑋)) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2821, 23, 25, 26, 27syl13anc 1370 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + 𝑤) + 𝑢) = (𝑧 + (𝑤 + 𝑢)))
2928eleq1d 2824 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑧 + (𝑤 + 𝑢)) ∈ 𝑆))
304, 7grpcl 18566 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
3121, 25, 26, 30syl3anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑤 + 𝑢) ∈ 𝑋)
321nmzbi 18773 . . . . . . . . . . 11 ((𝑧𝑁 ∧ (𝑤 + 𝑢) ∈ 𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
3322, 31, 32syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑤 + 𝑢) + 𝑧) ∈ 𝑆))
344, 7grpass 18567 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑤𝑋𝑢𝑋𝑧𝑋)) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3521, 25, 26, 23, 34syl13anc 1370 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + 𝑢) + 𝑧) = (𝑤 + (𝑢 + 𝑧)))
3635eleq1d 2824 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑤 + 𝑢) + 𝑧) ∈ 𝑆 ↔ (𝑤 + (𝑢 + 𝑧)) ∈ 𝑆))
374, 7grpcl 18566 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑧𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
3821, 26, 23, 37syl3anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (𝑢 + 𝑧) ∈ 𝑋)
391nmzbi 18773 . . . . . . . . . . 11 ((𝑤𝑁 ∧ (𝑢 + 𝑧) ∈ 𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4024, 38, 39syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑤 + (𝑢 + 𝑧)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
4133, 36, 403bitrd 304 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑧 + (𝑤 + 𝑢)) ∈ 𝑆 ↔ ((𝑢 + 𝑧) + 𝑤) ∈ 𝑆))
424, 7grpass 18567 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑢𝑋𝑧𝑋𝑤𝑋)) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4321, 26, 23, 25, 42syl13anc 1370 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → ((𝑢 + 𝑧) + 𝑤) = (𝑢 + (𝑧 + 𝑤)))
4443eleq1d 2824 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑢 + 𝑧) + 𝑤) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4529, 41, 443bitrd 304 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) ∧ 𝑢𝑋) → (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
4645ralrimiva 3109 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆))
471elnmz 18772 . . . . . . 7 ((𝑧 + 𝑤) ∈ 𝑁 ↔ ((𝑧 + 𝑤) ∈ 𝑋 ∧ ∀𝑢𝑋 (((𝑧 + 𝑤) + 𝑢) ∈ 𝑆 ↔ (𝑢 + (𝑧 + 𝑤)) ∈ 𝑆)))
4820, 46, 47sylanbrc 582 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑁𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
49483expa 1116 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑤𝑁) → (𝑧 + 𝑤) ∈ 𝑁)
5049ralrimiva 3109 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁)
51 eqid 2739 . . . . . . 7 (invg𝐺) = (invg𝐺)
524, 51grpinvcl 18608 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
5317, 52sylan2 592 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑋)
54 simplr 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑁)
55 simpll 763 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝐺 ∈ Grp)
5653adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((invg𝐺)‘𝑧) ∈ 𝑋)
57 simpr 484 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑢𝑋)
584, 7grpcl 18566 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
5955, 57, 56, 58syl3anc 1369 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)
604, 7grpcl 18566 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
6155, 56, 59, 60syl3anc 1369 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋)
621nmzbi 18773 . . . . . . . 8 ((𝑧𝑁 ∧ (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) ∈ 𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
6354, 61, 62syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆))
642, 54sselid 3923 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → 𝑧𝑋)
654, 7, 5, 51grprinv 18610 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6655, 64, 65syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + ((invg𝐺)‘𝑧)) = (0g𝐺))
6766oveq1d 7283 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))))
684, 7grpass 18567 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑧𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋)) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
6955, 64, 56, 59, 68syl13anc 1370 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + ((invg𝐺)‘𝑧)) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))))
704, 7, 5grplid 18590 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7155, 59, 70syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((0g𝐺) + (𝑢 + ((invg𝐺)‘𝑧))) = (𝑢 + ((invg𝐺)‘𝑧)))
7267, 69, 713eqtr3d 2787 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) = (𝑢 + ((invg𝐺)‘𝑧)))
7372eleq1d 2824 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑧 + (((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧)))) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
744, 7grpass 18567 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑋𝑧𝑋)) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
7555, 56, 59, 64, 74syl13anc 1370 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)))
764, 7grpass 18567 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑢𝑋 ∧ ((invg𝐺)‘𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
7755, 57, 56, 64, 76syl13anc 1370 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)))
784, 7, 5, 51grplinv 18609 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
7955, 64, 78syl2anc 583 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + 𝑧) = (0g𝐺))
8079oveq2d 7284 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (((invg𝐺)‘𝑧) + 𝑧)) = (𝑢 + (0g𝐺)))
814, 7, 5grprid 18591 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8255, 57, 81syl2anc 583 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (𝑢 + (0g𝐺)) = 𝑢)
8377, 80, 823eqtrd 2783 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧) = 𝑢)
8483oveq2d 7284 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((invg𝐺)‘𝑧) + ((𝑢 + ((invg𝐺)‘𝑧)) + 𝑧)) = (((invg𝐺)‘𝑧) + 𝑢))
8575, 84eqtrd 2779 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) = (((invg𝐺)‘𝑧) + 𝑢))
8685eleq1d 2824 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → (((((invg𝐺)‘𝑧) + (𝑢 + ((invg𝐺)‘𝑧))) + 𝑧) ∈ 𝑆 ↔ (((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆))
8763, 73, 863bitr3rd 309 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑧𝑁) ∧ 𝑢𝑋) → ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
8887ralrimiva 3109 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆))
891elnmz 18772 . . . . 5 (((invg𝐺)‘𝑧) ∈ 𝑁 ↔ (((invg𝐺)‘𝑧) ∈ 𝑋 ∧ ∀𝑢𝑋 ((((invg𝐺)‘𝑧) + 𝑢) ∈ 𝑆 ↔ (𝑢 + ((invg𝐺)‘𝑧)) ∈ 𝑆)))
9053, 88, 89sylanbrc 582 . . . 4 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → ((invg𝐺)‘𝑧) ∈ 𝑁)
9150, 90jca 511 . . 3 ((𝐺 ∈ Grp ∧ 𝑧𝑁) → (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
9291ralrimiva 3109 . 2 (𝐺 ∈ Grp → ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))
934, 7, 51issubg2 18751 . 2 (𝐺 ∈ Grp → (𝑁 ∈ (SubGrp‘𝐺) ↔ (𝑁𝑋𝑁 ≠ ∅ ∧ ∀𝑧𝑁 (∀𝑤𝑁 (𝑧 + 𝑤) ∈ 𝑁 ∧ ((invg𝐺)‘𝑧) ∈ 𝑁))))
943, 15, 92, 93mpbir3and 1340 1 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  {crab 3069  wss 3891  c0 4261  cfv 6430  (class class class)co 7268  Basecbs 16893  +gcplusg 16943  0gc0g 17131  Grpcgrp 18558  invgcminusg 18559  SubGrpcsubg 18730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-subg 18733
This theorem is referenced by:  nmznsg  18777  sylow3lem3  19215  sylow3lem4  19216  sylow3lem6  19218
  Copyright terms: Public domain W3C validator