| Step | Hyp | Ref
| Expression |
| 1 | | conjghm.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | conjghm.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
| 3 | | subgrcl 19119 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 4 | 3 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 5 | | eqid 2736 |
. . . . . . . . . 10
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 6 | | conjnmz.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
| 7 | 6 | ssrab3 4062 |
. . . . . . . . . . 11
⊢ 𝑁 ⊆ 𝑋 |
| 8 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
| 9 | 7, 8 | sselid 3961 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 10 | 1, 5, 4, 9 | grpinvcld 18976 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 11 | 1 | subgss 19115 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ 𝑋) |
| 13 | 12 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
| 14 | 1, 2, 4, 10, 13, 9 | grpassd 18933 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
| 15 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 16 | 1, 2, 15, 5, 4, 9 | grprinvd 18983 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
| 17 | 16 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
| 18 | 1, 2, 4, 9, 10, 13 | grpassd 18933 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
| 19 | 1, 2, 15, 4, 13 | grplidd 18957 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
| 20 | 17, 18, 19 | 3eqtr3d 2779 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) = 𝑤) |
| 21 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
| 22 | 20, 21 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆) |
| 23 | 1, 2, 4, 10, 13 | grpcld 18935 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
| 24 | 6 | nmzbi 19152 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
| 25 | 8, 23, 24 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
| 26 | 22, 25 | mpbid 232 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆) |
| 27 | 14, 26 | eqeltrrd 2836 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) |
| 28 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
| 29 | 28 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
| 30 | | conjsubg.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
| 31 | | ovex 7443 |
. . . . . . . 8
⊢ ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ V |
| 32 | 29, 30, 31 | fvmpt 6991 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆 → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
| 33 | 27, 32 | syl 17 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
| 34 | 16 | oveq1d 7425 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g‘𝐺) + (𝑤 + 𝐴))) |
| 35 | 1, 2, 4, 13, 9 | grpcld 18935 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝑤 + 𝐴) ∈ 𝑋) |
| 36 | 1, 2, 4, 9, 10, 35 | grpassd 18933 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
| 37 | 1, 2, 15, 4, 35 | grplidd 18957 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
| 38 | 34, 36, 37 | 3eqtr3d 2779 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴)) |
| 39 | 38 | oveq1d 7425 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) = ((𝑤 + 𝐴) − 𝐴)) |
| 40 | | conjghm.m |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
| 41 | 1, 2, 40 | grppncan 19019 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
| 42 | 4, 13, 9, 41 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
| 43 | 33, 39, 42 | 3eqtrd 2775 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤) |
| 44 | | ovex 7443 |
. . . . . . 7
⊢ ((𝐴 + 𝑥) − 𝐴) ∈ V |
| 45 | 44, 30 | fnmpti 6686 |
. . . . . 6
⊢ 𝐹 Fn 𝑆 |
| 46 | | fnfvelrn 7075 |
. . . . . 6
⊢ ((𝐹 Fn 𝑆 ∧ (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
| 47 | 45, 27, 46 | sylancr 587 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
| 48 | 43, 47 | eqeltrrd 2836 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ran 𝐹) |
| 49 | 48 | ex 412 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹)) |
| 50 | 49 | ssrdv 3969 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ ran 𝐹) |
| 51 | 3 | ad2antrr 726 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 52 | | simplr 768 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
| 53 | 7, 52 | sselid 3961 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 54 | 12 | sselda 3963 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
| 55 | 1, 2, 40 | grpaddsubass 19018 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
| 56 | 51, 53, 54, 53, 55 | syl13anc 1374 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
| 57 | 1, 2, 40 | grpnpcan 19020 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 58 | 51, 54, 53, 57 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 59 | | simpr 484 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 60 | 58, 59 | eqeltrd 2835 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆) |
| 61 | 1, 40 | grpsubcl 19008 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
| 62 | 51, 54, 53, 61 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
| 63 | 6 | nmzbi 19152 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑁 ∧ (𝑥 − 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
| 64 | 52, 62, 63 | syl2anc 584 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
| 65 | 60, 64 | mpbird 257 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝐴 + (𝑥 − 𝐴)) ∈ 𝑆) |
| 66 | 56, 65 | eqeltrd 2835 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑆) |
| 67 | 66, 30 | fmptd 7109 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐹:𝑆⟶𝑆) |
| 68 | 67 | frnd 6719 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → ran 𝐹 ⊆ 𝑆) |
| 69 | 50, 68 | eqssd 3981 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |