Step | Hyp | Ref
| Expression |
1 | | conjghm.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) |
2 | | conjghm.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
3 | | subgrcl 19171 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
4 | 3 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐺 ∈ Grp) |
5 | | eqid 2740 |
. . . . . . . . . 10
⊢
(invg‘𝐺) = (invg‘𝐺) |
6 | | conjnmz.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
7 | 6 | ssrab3 4105 |
. . . . . . . . . . 11
⊢ 𝑁 ⊆ 𝑋 |
8 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
9 | 7, 8 | sselid 4006 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
10 | 1, 5, 4, 9 | grpinvcld 19028 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
11 | 1 | subgss 19167 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ 𝑋) |
13 | 12 | sselda 4008 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
14 | 1, 2, 4, 10, 13, 9 | grpassd 18985 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
15 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
16 | 1, 2, 15, 5, 4, 9 | grprinvd 19035 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
17 | 16 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
18 | 1, 2, 4, 9, 10, 13 | grpassd 18985 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
19 | 1, 2, 15, 4, 13 | grplidd 19009 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
20 | 17, 18, 19 | 3eqtr3d 2788 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) = 𝑤) |
21 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
22 | 20, 21 | eqeltrd 2844 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆) |
23 | 1, 2, 4, 10, 13 | grpcld 18987 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
24 | 6 | nmzbi 19204 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
25 | 8, 23, 24 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
26 | 22, 25 | mpbid 232 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆) |
27 | 14, 26 | eqeltrrd 2845 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) |
28 | | oveq2 7456 |
. . . . . . . . 9
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
29 | 28 | oveq1d 7463 |
. . . . . . . 8
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
30 | | conjsubg.f |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
31 | | ovex 7481 |
. . . . . . . 8
⊢ ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ V |
32 | 29, 30, 31 | fvmpt 7029 |
. . . . . . 7
⊢
((((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆 → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
33 | 27, 32 | syl 17 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
34 | 16 | oveq1d 7463 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g‘𝐺) + (𝑤 + 𝐴))) |
35 | 1, 2, 4, 13, 9 | grpcld 18987 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝑤 + 𝐴) ∈ 𝑋) |
36 | 1, 2, 4, 9, 10, 35 | grpassd 18985 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
37 | 1, 2, 15, 4, 35 | grplidd 19009 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
38 | 34, 36, 37 | 3eqtr3d 2788 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴)) |
39 | 38 | oveq1d 7463 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) = ((𝑤 + 𝐴) − 𝐴)) |
40 | | conjghm.m |
. . . . . . . 8
⊢ − =
(-g‘𝐺) |
41 | 1, 2, 40 | grppncan 19071 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
42 | 4, 13, 9, 41 | syl3anc 1371 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
43 | 33, 39, 42 | 3eqtrd 2784 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤) |
44 | | ovex 7481 |
. . . . . . 7
⊢ ((𝐴 + 𝑥) − 𝐴) ∈ V |
45 | 44, 30 | fnmpti 6723 |
. . . . . 6
⊢ 𝐹 Fn 𝑆 |
46 | | fnfvelrn 7114 |
. . . . . 6
⊢ ((𝐹 Fn 𝑆 ∧ (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
47 | 45, 27, 46 | sylancr 586 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
48 | 43, 47 | eqeltrrd 2845 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ran 𝐹) |
49 | 48 | ex 412 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹)) |
50 | 49 | ssrdv 4014 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ ran 𝐹) |
51 | 3 | ad2antrr 725 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
52 | | simplr 768 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
53 | 7, 52 | sselid 4006 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
54 | 12 | sselda 4008 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
55 | 1, 2, 40 | grpaddsubass 19070 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
56 | 51, 53, 54, 53, 55 | syl13anc 1372 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
57 | 1, 2, 40 | grpnpcan 19072 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
58 | 51, 54, 53, 57 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
59 | | simpr 484 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
60 | 58, 59 | eqeltrd 2844 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆) |
61 | 1, 40 | grpsubcl 19060 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
62 | 51, 54, 53, 61 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
63 | 6 | nmzbi 19204 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑁 ∧ (𝑥 − 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
64 | 52, 62, 63 | syl2anc 583 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
65 | 60, 64 | mpbird 257 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝐴 + (𝑥 − 𝐴)) ∈ 𝑆) |
66 | 56, 65 | eqeltrd 2844 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑆) |
67 | 66, 30 | fmptd 7148 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐹:𝑆⟶𝑆) |
68 | 67 | frnd 6755 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → ran 𝐹 ⊆ 𝑆) |
69 | 50, 68 | eqssd 4026 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |