MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnmz Structured version   Visualization version   GIF version

Theorem conjnmz 19292
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmz ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjghm.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 conjghm.p . . . . . . . . 9 + = (+g𝐺)
3 subgrcl 19171 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
43ad2antrr 725 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐺 ∈ Grp)
5 eqid 2740 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
6 conjnmz.1 . . . . . . . . . . . 12 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
76ssrab3 4105 . . . . . . . . . . 11 𝑁𝑋
8 simplr 768 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑁)
97, 8sselid 4006 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑋)
101, 5, 4, 9grpinvcld 19028 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((invg𝐺)‘𝐴) ∈ 𝑋)
111subgss 19167 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1211adantr 480 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆𝑋)
1312sselda 4008 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑋)
141, 2, 4, 10, 13, 9grpassd 18985 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)))
15 eqid 2740 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
161, 2, 15, 5, 4, 9grprinvd 19035 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + ((invg𝐺)‘𝐴)) = (0g𝐺))
1716oveq1d 7463 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = ((0g𝐺) + 𝑤))
181, 2, 4, 9, 10, 13grpassd 18985 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)))
191, 2, 15, 4, 13grplidd 19009 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2017, 18, 193eqtr3d 2788 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) = 𝑤)
21 simpr 484 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑆)
2220, 21eqeltrd 2844 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆)
231, 2, 4, 10, 13grpcld 18987 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋)
246nmzbi 19204 . . . . . . . . . 10 ((𝐴𝑁 ∧ (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
258, 23, 24syl2anc 583 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
2622, 25mpbid 232 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)
2714, 26eqeltrrd 2845 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆)
28 oveq2 7456 . . . . . . . . 9 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
2928oveq1d 7463 . . . . . . . 8 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
30 conjsubg.f . . . . . . . 8 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
31 ovex 7481 . . . . . . . 8 ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) ∈ V
3229, 30, 31fvmpt 7029 . . . . . . 7 ((((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆 → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
3327, 32syl 17 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
3416oveq1d 7463 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g𝐺) + (𝑤 + 𝐴)))
351, 2, 4, 13, 9grpcld 18987 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝑤 + 𝐴) ∈ 𝑋)
361, 2, 4, 9, 10, 35grpassd 18985 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
371, 2, 15, 4, 35grplidd 19009 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴))
3834, 36, 373eqtr3d 2788 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴))
3938oveq1d 7463 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) = ((𝑤 + 𝐴) 𝐴))
40 conjghm.m . . . . . . . 8 = (-g𝐺)
411, 2, 40grppncan 19071 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
424, 13, 9, 41syl3anc 1371 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
4333, 39, 423eqtrd 2784 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤)
44 ovex 7481 . . . . . . 7 ((𝐴 + 𝑥) 𝐴) ∈ V
4544, 30fnmpti 6723 . . . . . 6 𝐹 Fn 𝑆
46 fnfvelrn 7114 . . . . . 6 ((𝐹 Fn 𝑆 ∧ (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
4745, 27, 46sylancr 586 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
4843, 47eqeltrrd 2845 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤 ∈ ran 𝐹)
4948ex 412 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝑤𝑆𝑤 ∈ ran 𝐹))
5049ssrdv 4014 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 ⊆ ran 𝐹)
513ad2antrr 725 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
52 simplr 768 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑁)
537, 52sselid 4006 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑋)
5412sselda 4008 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑋)
551, 2, 40grpaddsubass 19070 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
5651, 53, 54, 53, 55syl13anc 1372 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
571, 2, 40grpnpcan 19072 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((𝑥 𝐴) + 𝐴) = 𝑥)
5851, 54, 53, 57syl3anc 1371 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) = 𝑥)
59 simpr 484 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑆)
6058, 59eqeltrd 2844 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) ∈ 𝑆)
611, 40grpsubcl 19060 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
6251, 54, 53, 61syl3anc 1371 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
636nmzbi 19204 . . . . . . 7 ((𝐴𝑁 ∧ (𝑥 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
6452, 62, 63syl2anc 583 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
6560, 64mpbird 257 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝐴 + (𝑥 𝐴)) ∈ 𝑆)
6656, 65eqeltrd 2844 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑆)
6766, 30fmptd 7148 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐹:𝑆𝑆)
6867frnd 6755 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → ran 𝐹𝑆)
6950, 68eqssd 4026 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976  cmpt 5249  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  SubGrpcsubg 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163
This theorem is referenced by:  conjnmzb  19293  conjnsg  19294  sylow3lem2  19670
  Copyright terms: Public domain W3C validator