| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnmz | Structured version Visualization version GIF version | ||
| Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
| Ref | Expression |
|---|---|
| elnmz | ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧)) | |
| 2 | 1 | eleq1d 2816 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑧) ∈ 𝑆)) |
| 3 | oveq1 7353 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑥) = (𝑧 + 𝑥)) | |
| 4 | 3 | eleq1d 2816 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
| 5 | 2, 4 | bibi12d 345 | . . . 4 ⊢ (𝑦 = 𝑧 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))) |
| 6 | 5 | cbvralvw 3210 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
| 7 | oveq1 7353 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑧) = (𝐴 + 𝑧)) | |
| 8 | 7 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝑧) ∈ 𝑆)) |
| 9 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑧 + 𝑥) = (𝑧 + 𝐴)) | |
| 10 | 9 | eleq1d 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)) |
| 11 | 8, 10 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 12 | 11 | ralbidv 3155 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 13 | 6, 12 | bitrid 283 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| 14 | elnmz.1 | . 2 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
| 15 | 13, 14 | elrab2 3645 | 1 ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: nmzbi 19076 nmzsubg 19077 ssnmz 19078 conjnmzb 19165 sylow3lem2 19540 |
| Copyright terms: Public domain | W3C validator |