MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnmz Structured version   Visualization version   GIF version

Theorem elnmz 19086
Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
Assertion
Ref Expression
elnmz (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑆,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem elnmz
StepHypRef Expression
1 oveq2 7420 . . . . . 6 (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧))
21eleq1d 2817 . . . . 5 (𝑦 = 𝑧 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑧) ∈ 𝑆))
3 oveq1 7419 . . . . . 6 (𝑦 = 𝑧 → (𝑦 + 𝑥) = (𝑧 + 𝑥))
43eleq1d 2817 . . . . 5 (𝑦 = 𝑧 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))
52, 4bibi12d 345 . . . 4 (𝑦 = 𝑧 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
65cbvralvw 3233 . . 3 (∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))
7 oveq1 7419 . . . . . 6 (𝑥 = 𝐴 → (𝑥 + 𝑧) = (𝐴 + 𝑧))
87eleq1d 2817 . . . . 5 (𝑥 = 𝐴 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝑧) ∈ 𝑆))
9 oveq2 7420 . . . . . 6 (𝑥 = 𝐴 → (𝑧 + 𝑥) = (𝑧 + 𝐴))
109eleq1d 2817 . . . . 5 (𝑥 = 𝐴 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))
118, 10bibi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
1211ralbidv 3176 . . 3 (𝑥 = 𝐴 → (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
136, 12bitrid 283 . 2 (𝑥 = 𝐴 → (∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
14 elnmz.1 . 2 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
1513, 14elrab2 3686 1 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  {crab 3431  (class class class)co 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7415
This theorem is referenced by:  nmzbi  19087  nmzsubg  19088  ssnmz  19089  conjnmzb  19174  sylow3lem2  19544
  Copyright terms: Public domain W3C validator