MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnmz Structured version   Visualization version   GIF version

Theorem elnmz 19181
Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
Assertion
Ref Expression
elnmz (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑆,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem elnmz
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧))
21eleq1d 2826 . . . . 5 (𝑦 = 𝑧 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑧) ∈ 𝑆))
3 oveq1 7438 . . . . . 6 (𝑦 = 𝑧 → (𝑦 + 𝑥) = (𝑧 + 𝑥))
43eleq1d 2826 . . . . 5 (𝑦 = 𝑧 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))
52, 4bibi12d 345 . . . 4 (𝑦 = 𝑧 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)))
65cbvralvw 3237 . . 3 (∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))
7 oveq1 7438 . . . . . 6 (𝑥 = 𝐴 → (𝑥 + 𝑧) = (𝐴 + 𝑧))
87eleq1d 2826 . . . . 5 (𝑥 = 𝐴 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝑧) ∈ 𝑆))
9 oveq2 7439 . . . . . 6 (𝑥 = 𝐴 → (𝑧 + 𝑥) = (𝑧 + 𝐴))
109eleq1d 2826 . . . . 5 (𝑥 = 𝐴 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))
118, 10bibi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
1211ralbidv 3178 . . 3 (𝑥 = 𝐴 → (∀𝑧𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
136, 12bitrid 283 . 2 (𝑥 = 𝐴 → (∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
14 elnmz.1 . 2 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
1513, 14elrab2 3695 1 (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434
This theorem is referenced by:  nmzbi  19182  nmzsubg  19183  ssnmz  19184  conjnmzb  19271  sylow3lem2  19646
  Copyright terms: Public domain W3C validator