Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnmz | Structured version Visualization version GIF version |
Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
Ref | Expression |
---|---|
elnmz | ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7263 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑥 + 𝑦) = (𝑥 + 𝑧)) | |
2 | 1 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥 + 𝑧) ∈ 𝑆)) |
3 | oveq1 7262 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 + 𝑥) = (𝑧 + 𝑥)) | |
4 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
5 | 2, 4 | bibi12d 345 | . . . 4 ⊢ (𝑦 = 𝑧 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆))) |
6 | 5 | cbvralvw 3372 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆)) |
7 | oveq1 7262 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 + 𝑧) = (𝐴 + 𝑧)) | |
8 | 7 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝐴 + 𝑧) ∈ 𝑆)) |
9 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑧 + 𝑥) = (𝑧 + 𝐴)) | |
10 | 9 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑧 + 𝑥) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)) |
11 | 8, 10 | bibi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
12 | 11 | ralbidv 3120 | . . 3 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑋 ((𝑥 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
13 | 6, 12 | syl5bb 282 | . 2 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
14 | elnmz.1 | . 2 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
15 | 13, 14 | elrab2 3620 | 1 ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: nmzbi 18707 nmzsubg 18708 ssnmz 18709 conjnmzb 18784 sylow3lem2 19148 |
Copyright terms: Public domain | W3C validator |