| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shne0i | Structured version Visualization version GIF version | ||
| Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shne0.1 | ⊢ 𝐴 ∈ Sℋ |
| Ref | Expression |
|---|---|
| shne0i | ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ) | |
| 2 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ)) | |
| 3 | nss 4000 | . . 3 ⊢ (¬ 𝐴 ⊆ 0ℋ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ)) | |
| 4 | shne0.1 | . . . . 5 ⊢ 𝐴 ∈ Sℋ | |
| 5 | shle0 31386 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
| 7 | 6 | notbii 320 | . . 3 ⊢ (¬ 𝐴 ⊆ 0ℋ ↔ ¬ 𝐴 = 0ℋ) |
| 8 | 2, 3, 7 | 3bitr2ri 300 | . 2 ⊢ (¬ 𝐴 = 0ℋ ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ) |
| 9 | elch0 31198 | . . . 4 ⊢ (𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ) | |
| 10 | 9 | necon3bbii 2972 | . . 3 ⊢ (¬ 𝑥 ∈ 0ℋ ↔ 𝑥 ≠ 0ℎ) |
| 11 | 10 | rexbii 3076 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| 12 | 1, 8, 11 | 3bitri 297 | 1 ⊢ (𝐴 ≠ 0ℋ ↔ ∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ⊆ wss 3903 0ℎc0v 30868 Sℋ csh 30872 0ℋc0h 30879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-hilex 30943 ax-hv0cl 30947 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-sh 31151 df-ch0 31197 |
| This theorem is referenced by: chne0i 31397 shatomici 32302 |
| Copyright terms: Public domain | W3C validator |