HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shne0i Structured version   Visualization version   GIF version

Theorem shne0i 31384
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
shne0.1 𝐴S
Assertion
Ref Expression
shne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem shne0i
StepHypRef Expression
1 df-ne 2927 . 2 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 df-rex 3055 . . 3 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
3 nss 4014 . . 3 𝐴 ⊆ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
4 shne0.1 . . . . 5 𝐴S
5 shle0 31378 . . . . 5 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
64, 5ax-mp 5 . . . 4 (𝐴 ⊆ 0𝐴 = 0)
76notbii 320 . . 3 𝐴 ⊆ 0 ↔ ¬ 𝐴 = 0)
82, 3, 73bitr2ri 300 . 2 𝐴 = 0 ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ 0)
9 elch0 31190 . . . 4 (𝑥 ∈ 0𝑥 = 0)
109necon3bbii 2973 . . 3 𝑥 ∈ 0𝑥 ≠ 0)
1110rexbii 3077 . 2 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
121, 8, 113bitri 297 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wrex 3054  wss 3917  0c0v 30860   S csh 30864  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-hilex 30935  ax-hv0cl 30939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-sh 31143  df-ch0 31189
This theorem is referenced by:  chne0i  31389  shatomici  32294
  Copyright terms: Public domain W3C validator