HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shne0i Structured version   Visualization version   GIF version

Theorem shne0i 31429
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
shne0.1 𝐴S
Assertion
Ref Expression
shne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem shne0i
StepHypRef Expression
1 df-ne 2933 . 2 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 df-rex 3061 . . 3 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
3 nss 4023 . . 3 𝐴 ⊆ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
4 shne0.1 . . . . 5 𝐴S
5 shle0 31423 . . . . 5 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
64, 5ax-mp 5 . . . 4 (𝐴 ⊆ 0𝐴 = 0)
76notbii 320 . . 3 𝐴 ⊆ 0 ↔ ¬ 𝐴 = 0)
82, 3, 73bitr2ri 300 . 2 𝐴 = 0 ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ 0)
9 elch0 31235 . . . 4 (𝑥 ∈ 0𝑥 = 0)
109necon3bbii 2979 . . 3 𝑥 ∈ 0𝑥 ≠ 0)
1110rexbii 3083 . 2 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
121, 8, 113bitri 297 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  wss 3926  0c0v 30905   S csh 30909  0c0h 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-hilex 30980  ax-hv0cl 30984
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-sh 31188  df-ch0 31234
This theorem is referenced by:  chne0i  31434  shatomici  32339
  Copyright terms: Public domain W3C validator