HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shne0i Structured version   Visualization version   GIF version

Theorem shne0i 29711
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
shne0.1 𝐴S
Assertion
Ref Expression
shne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem shne0i
StepHypRef Expression
1 df-ne 2943 . 2 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 df-rex 3069 . . 3 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
3 nss 3979 . . 3 𝐴 ⊆ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
4 shne0.1 . . . . 5 𝐴S
5 shle0 29705 . . . . 5 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
64, 5ax-mp 5 . . . 4 (𝐴 ⊆ 0𝐴 = 0)
76notbii 319 . . 3 𝐴 ⊆ 0 ↔ ¬ 𝐴 = 0)
82, 3, 73bitr2ri 299 . 2 𝐴 = 0 ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ 0)
9 elch0 29517 . . . 4 (𝑥 ∈ 0𝑥 = 0)
109necon3bbii 2990 . . 3 𝑥 ∈ 0𝑥 ≠ 0)
1110rexbii 3177 . 2 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
121, 8, 113bitri 296 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  wss 3883  0c0v 29187   S csh 29191  0c0h 29198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-hilex 29262  ax-hv0cl 29266
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-sh 29470  df-ch0 29516
This theorem is referenced by:  chne0i  29716  shatomici  30621
  Copyright terms: Public domain W3C validator