HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shne0i Structured version   Visualization version   GIF version

Theorem shne0i 30701
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
shne0.1 𝐴S
Assertion
Ref Expression
shne0i (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem shne0i
StepHypRef Expression
1 df-ne 2942 . 2 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 df-rex 3072 . . 3 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
3 nss 4047 . . 3 𝐴 ⊆ 0 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥 ∈ 0))
4 shne0.1 . . . . 5 𝐴S
5 shle0 30695 . . . . 5 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
64, 5ax-mp 5 . . . 4 (𝐴 ⊆ 0𝐴 = 0)
76notbii 320 . . 3 𝐴 ⊆ 0 ↔ ¬ 𝐴 = 0)
82, 3, 73bitr2ri 300 . 2 𝐴 = 0 ↔ ∃𝑥𝐴 ¬ 𝑥 ∈ 0)
9 elch0 30507 . . . 4 (𝑥 ∈ 0𝑥 = 0)
109necon3bbii 2989 . . 3 𝑥 ∈ 0𝑥 ≠ 0)
1110rexbii 3095 . 2 (∃𝑥𝐴 ¬ 𝑥 ∈ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
121, 8, 113bitri 297 1 (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2941  wrex 3071  wss 3949  0c0v 30177   S csh 30181  0c0h 30188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-hilex 30252  ax-hv0cl 30256
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-sh 30460  df-ch0 30506
This theorem is referenced by:  chne0i  30706  shatomici  31611
  Copyright terms: Public domain W3C validator