Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem10 Structured version   Visualization version   GIF version

Theorem erdszelem10 32038
Description: Lemma for erdsze 32040. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem10 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐹   𝑛,𝐼,𝑥,𝑦   𝑛,𝐽,𝑥,𝑦   𝑅,𝑚,𝑥,𝑦   𝑚,𝑁,𝑛,𝑥,𝑦   𝜑,𝑚,𝑛,𝑥,𝑦   𝑆,𝑚,𝑥,𝑦   𝑇,𝑚
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)   𝐼(𝑚)   𝐽(𝑚)

Proof of Theorem erdszelem10
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13155 . . . . . . . 8 (1...(𝑅 − 1)) ∈ Fin
2 fzfi 13155 . . . . . . . 8 (1...(𝑆 − 1)) ∈ Fin
3 xpfi 8584 . . . . . . . 8 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin)
41, 2, 3mp2an 679 . . . . . . 7 ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin
5 ssdomg 8352 . . . . . . 7 (((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin → (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
64, 5ax-mp 5 . . . . . 6 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
7 domnsym 8439 . . . . . 6 (ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
86, 7syl 17 . . . . 5 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
9 erdszelem.m . . . . . . . 8 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
10 hashxp 13608 . . . . . . . . . 10 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))))
111, 2, 10mp2an 679 . . . . . . . . 9 (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1))))
12 erdszelem.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
13 nnm1nn0 11750 . . . . . . . . . . 11 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
14 hashfz1 13521 . . . . . . . . . . 11 ((𝑅 − 1) ∈ ℕ0 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
1512, 13, 143syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
16 erdszelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
17 nnm1nn0 11750 . . . . . . . . . . 11 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
18 hashfz1 13521 . . . . . . . . . . 11 ((𝑆 − 1) ∈ ℕ0 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
1916, 17, 183syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
2015, 19oveq12d 6994 . . . . . . . . 9 (𝜑 → ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
2111, 20syl5eq 2826 . . . . . . . 8 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
22 erdsze.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
2322nnnn0d 11767 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
24 hashfz1 13521 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2523, 24syl 17 . . . . . . . 8 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
269, 21, 253brtr4d 4961 . . . . . . 7 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)))
27 fzfid 13156 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
28 hashsdom 13555 . . . . . . . 8 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
294, 27, 28sylancr 578 . . . . . . 7 (𝜑 → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
3026, 29mpbid 224 . . . . . 6 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))
31 erdsze.f . . . . . . . 8 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
32 erdszelem.i . . . . . . . 8 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
33 erdszelem.j . . . . . . . 8 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
34 erdszelem.t . . . . . . . 8 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
3522, 31, 32, 33, 34erdszelem9 32037 . . . . . . 7 (𝜑𝑇:(1...𝑁)–1-1→(ℕ × ℕ))
36 f1f1orn 6455 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇:(1...𝑁)–1-1-onto→ran 𝑇)
37 ovex 7008 . . . . . . . 8 (1...𝑁) ∈ V
3837f1oen 8327 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→ran 𝑇 → (1...𝑁) ≈ ran 𝑇)
3935, 36, 383syl 18 . . . . . 6 (𝜑 → (1...𝑁) ≈ ran 𝑇)
40 sdomentr 8447 . . . . . 6 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁) ∧ (1...𝑁) ≈ ran 𝑇) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
4130, 39, 40syl2anc 576 . . . . 5 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
428, 41nsyl3 136 . . . 4 (𝜑 → ¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
43 nss 3919 . . . . 5 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
44 df-rex 3094 . . . . 5 (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4543, 44bitr4i 270 . . . 4 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
4642, 45sylib 210 . . 3 (𝜑 → ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
47 f1fn 6405 . . . 4 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇 Fn (1...𝑁))
48 eleq1 2853 . . . . . 6 (𝑠 = (𝑇𝑚) → (𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4948notbid 310 . . . . 5 (𝑠 = (𝑇𝑚) → (¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5049rexrn 6678 . . . 4 (𝑇 Fn (1...𝑁) → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5135, 47, 503syl 18 . . 3 (𝜑 → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5246, 51mpbid 224 . 2 (𝜑 → ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
53 fveq2 6499 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐼𝑛) = (𝐼𝑚))
54 fveq2 6499 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐽𝑛) = (𝐽𝑚))
5553, 54opeq12d 4685 . . . . . . . . 9 (𝑛 = 𝑚 → ⟨(𝐼𝑛), (𝐽𝑛)⟩ = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
56 opex 5213 . . . . . . . . 9 ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ V
5755, 34, 56fvmpt 6595 . . . . . . . 8 (𝑚 ∈ (1...𝑁) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5857adantl 474 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝑁)) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5958eleq1d 2850 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
60 opelxp 5443 . . . . . 6 (⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6159, 60syl6bb 279 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6261notbid 310 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
63 ianor 964 . . . 4 (¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6462, 63syl6bb 279 . . 3 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6564rexbidva 3241 . 2 (𝜑 → (∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6652, 65mpbid 224 1 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wex 1742  wcel 2050  wrex 3089  {crab 3092  wss 3829  𝒫 cpw 4422  cop 4447   class class class wbr 4929  cmpt 5008   × cxp 5405  ccnv 5406  ran crn 5408  cres 5409  cima 5410   Fn wfn 6183  1-1wf1 6185  1-1-ontowf1o 6187  cfv 6188   Isom wiso 6189  (class class class)co 6976  cen 8303  cdom 8304  csdm 8305  Fincfn 8306  supcsup 8699  cr 10334  1c1 10336   · cmul 10340   < clt 10474  cmin 10670  cn 11439  0cn0 11707  ...cfz 12708  chash 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506
This theorem is referenced by:  erdszelem11  32039
  Copyright terms: Public domain W3C validator