Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem10 Structured version   Visualization version   GIF version

Theorem erdszelem10 35205
Description: Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem10 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐹   𝑛,𝐼,𝑥,𝑦   𝑛,𝐽,𝑥,𝑦   𝑅,𝑚,𝑥,𝑦   𝑚,𝑁,𝑛,𝑥,𝑦   𝜑,𝑚,𝑛,𝑥,𝑦   𝑆,𝑚,𝑥,𝑦   𝑇,𝑚
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)   𝐼(𝑚)   𝐽(𝑚)

Proof of Theorem erdszelem10
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fzfi 14013 . . . . . . . 8 (1...(𝑅 − 1)) ∈ Fin
2 fzfi 14013 . . . . . . . 8 (1...(𝑆 − 1)) ∈ Fin
3 xpfi 9358 . . . . . . . 8 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin)
41, 2, 3mp2an 692 . . . . . . 7 ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin
5 ssdomg 9040 . . . . . . 7 (((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin → (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
64, 5ax-mp 5 . . . . . 6 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
7 domnsym 9139 . . . . . 6 (ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
86, 7syl 17 . . . . 5 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
9 erdszelem.m . . . . . . . 8 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
10 hashxp 14473 . . . . . . . . . 10 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))))
111, 2, 10mp2an 692 . . . . . . . . 9 (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1))))
12 erdszelem.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
13 nnm1nn0 12567 . . . . . . . . . . 11 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
14 hashfz1 14385 . . . . . . . . . . 11 ((𝑅 − 1) ∈ ℕ0 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
1512, 13, 143syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
16 erdszelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
17 nnm1nn0 12567 . . . . . . . . . . 11 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
18 hashfz1 14385 . . . . . . . . . . 11 ((𝑆 − 1) ∈ ℕ0 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
1916, 17, 183syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
2015, 19oveq12d 7449 . . . . . . . . 9 (𝜑 → ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
2111, 20eqtrid 2789 . . . . . . . 8 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
22 erdsze.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
2322nnnn0d 12587 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
24 hashfz1 14385 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2523, 24syl 17 . . . . . . . 8 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
269, 21, 253brtr4d 5175 . . . . . . 7 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)))
27 fzfid 14014 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
28 hashsdom 14420 . . . . . . . 8 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
294, 27, 28sylancr 587 . . . . . . 7 (𝜑 → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
3026, 29mpbid 232 . . . . . 6 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))
31 erdsze.f . . . . . . . 8 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
32 erdszelem.i . . . . . . . 8 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
33 erdszelem.j . . . . . . . 8 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
34 erdszelem.t . . . . . . . 8 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
3522, 31, 32, 33, 34erdszelem9 35204 . . . . . . 7 (𝜑𝑇:(1...𝑁)–1-1→(ℕ × ℕ))
36 f1f1orn 6859 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇:(1...𝑁)–1-1-onto→ran 𝑇)
37 ovex 7464 . . . . . . . 8 (1...𝑁) ∈ V
3837f1oen 9013 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→ran 𝑇 → (1...𝑁) ≈ ran 𝑇)
3935, 36, 383syl 18 . . . . . 6 (𝜑 → (1...𝑁) ≈ ran 𝑇)
40 sdomentr 9151 . . . . . 6 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁) ∧ (1...𝑁) ≈ ran 𝑇) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
4130, 39, 40syl2anc 584 . . . . 5 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
428, 41nsyl3 138 . . . 4 (𝜑 → ¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
43 nss 4048 . . . . 5 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
44 df-rex 3071 . . . . 5 (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4543, 44bitr4i 278 . . . 4 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
4642, 45sylib 218 . . 3 (𝜑 → ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
47 f1fn 6805 . . . 4 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇 Fn (1...𝑁))
48 eleq1 2829 . . . . . 6 (𝑠 = (𝑇𝑚) → (𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4948notbid 318 . . . . 5 (𝑠 = (𝑇𝑚) → (¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5049rexrn 7107 . . . 4 (𝑇 Fn (1...𝑁) → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5135, 47, 503syl 18 . . 3 (𝜑 → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5246, 51mpbid 232 . 2 (𝜑 → ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
53 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐼𝑛) = (𝐼𝑚))
54 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐽𝑛) = (𝐽𝑚))
5553, 54opeq12d 4881 . . . . . . . . 9 (𝑛 = 𝑚 → ⟨(𝐼𝑛), (𝐽𝑛)⟩ = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
56 opex 5469 . . . . . . . . 9 ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ V
5755, 34, 56fvmpt 7016 . . . . . . . 8 (𝑚 ∈ (1...𝑁) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5857adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝑁)) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5958eleq1d 2826 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
60 opelxp 5721 . . . . . 6 (⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6159, 60bitrdi 287 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6261notbid 318 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
63 ianor 984 . . . 4 (¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6462, 63bitrdi 287 . . 3 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6564rexbidva 3177 . 2 (𝜑 → (∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6652, 65mpbid 232 1 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wex 1779  wcel 2108  wrex 3070  {crab 3436  wss 3951  𝒫 cpw 4600  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  ran crn 5686  cres 5687  cima 5688   Fn wfn 6556  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561   Isom wiso 6562  (class class class)co 7431  cen 8982  cdom 8983  csdm 8984  Fincfn 8985  supcsup 9480  cr 11154  1c1 11156   · cmul 11160   < clt 11295  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  erdszelem11  35206
  Copyright terms: Public domain W3C validator