Step | Hyp | Ref
| Expression |
1 | | fzfi 13701 |
. . . . . . . 8
⊢
(1...(𝑅 − 1))
∈ Fin |
2 | | fzfi 13701 |
. . . . . . . 8
⊢
(1...(𝑆 − 1))
∈ Fin |
3 | | xpfi 9094 |
. . . . . . . 8
⊢
(((1...(𝑅 −
1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈
Fin) |
4 | 1, 2, 3 | mp2an 689 |
. . . . . . 7
⊢
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ∈ Fin |
5 | | ssdomg 8795 |
. . . . . . 7
⊢
(((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ∈ Fin → (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢ (ran
𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) |
7 | | domnsym 8895 |
. . . . . 6
⊢ (ran
𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ≺ ran 𝑇) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ (ran
𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ≺ ran 𝑇) |
9 | | erdszelem.m |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) |
10 | | hashxp 14158 |
. . . . . . . . . 10
⊢
(((1...(𝑅 −
1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) = ((♯‘(1...(𝑅 − 1))) ·
(♯‘(1...(𝑆
− 1))))) |
11 | 1, 2, 10 | mp2an 689 |
. . . . . . . . 9
⊢
(♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) ·
(♯‘(1...(𝑆
− 1)))) |
12 | | erdszelem.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℕ) |
13 | | nnm1nn0 12283 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ ℕ → (𝑅 − 1) ∈
ℕ0) |
14 | | hashfz1 14069 |
. . . . . . . . . . 11
⊢ ((𝑅 − 1) ∈
ℕ0 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1)) |
15 | 12, 13, 14 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1)) |
16 | | erdszelem.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ ℕ) |
17 | | nnm1nn0 12283 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ ℕ → (𝑆 − 1) ∈
ℕ0) |
18 | | hashfz1 14069 |
. . . . . . . . . . 11
⊢ ((𝑆 − 1) ∈
ℕ0 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1)) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1)) |
20 | 15, 19 | oveq12d 7302 |
. . . . . . . . 9
⊢ (𝜑 →
((♯‘(1...(𝑅
− 1))) · (♯‘(1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1))) |
21 | 11, 20 | eqtrid 2791 |
. . . . . . . 8
⊢ (𝜑 →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) = ((𝑅 −
1) · (𝑆 −
1))) |
22 | | erdsze.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) |
23 | 22 | nnnn0d 12302 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
24 | | hashfz1 14069 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
26 | 9, 21, 25 | 3brtr4d 5107 |
. . . . . . 7
⊢ (𝜑 →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁))) |
27 | | fzfid 13702 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
28 | | hashsdom 14105 |
. . . . . . . 8
⊢
((((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ∈ Fin ∧ (1...𝑁) ∈ Fin) →
((♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))) |
29 | 4, 27, 28 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 →
((♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))) |
30 | 26, 29 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)) |
31 | | erdsze.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
32 | | erdszelem.i |
. . . . . . . 8
⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
33 | | erdszelem.j |
. . . . . . . 8
⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
34 | | erdszelem.t |
. . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) |
35 | 22, 31, 32, 33, 34 | erdszelem9 33170 |
. . . . . . 7
⊢ (𝜑 → 𝑇:(1...𝑁)–1-1→(ℕ × ℕ)) |
36 | | f1f1orn 6736 |
. . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇:(1...𝑁)–1-1-onto→ran
𝑇) |
37 | | ovex 7317 |
. . . . . . . 8
⊢
(1...𝑁) ∈
V |
38 | 37 | f1oen 8770 |
. . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1-onto→ran
𝑇 → (1...𝑁) ≈ ran 𝑇) |
39 | 35, 36, 38 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (1...𝑁) ≈ ran 𝑇) |
40 | | sdomentr 8907 |
. . . . . 6
⊢
((((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ≺ (1...𝑁) ∧
(1...𝑁) ≈ ran 𝑇) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇) |
41 | 30, 39, 40 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇) |
42 | 8, 41 | nsyl3 138 |
. . . 4
⊢ (𝜑 → ¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) |
43 | | nss 3984 |
. . . . 5
⊢ (¬
ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔
∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
44 | | df-rex 3071 |
. . . . 5
⊢
(∃𝑠 ∈ ran
𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
45 | 43, 44 | bitr4i 277 |
. . . 4
⊢ (¬
ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔
∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) |
46 | 42, 45 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) |
47 | | f1fn 6680 |
. . . 4
⊢ (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇 Fn (1...𝑁)) |
48 | | eleq1 2827 |
. . . . . 6
⊢ (𝑠 = (𝑇‘𝑚) → (𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
49 | 48 | notbid 318 |
. . . . 5
⊢ (𝑠 = (𝑇‘𝑚) → (¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
50 | 49 | rexrn 6972 |
. . . 4
⊢ (𝑇 Fn (1...𝑁) → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
51 | 35, 47, 50 | 3syl 18 |
. . 3
⊢ (𝜑 → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
52 | 46, 51 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) |
53 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐼‘𝑛) = (𝐼‘𝑚)) |
54 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐽‘𝑛) = (𝐽‘𝑚)) |
55 | 53, 54 | opeq12d 4813 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) |
56 | | opex 5380 |
. . . . . . . . 9
⊢
〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ V |
57 | 55, 34, 56 | fvmpt 6884 |
. . . . . . . 8
⊢ (𝑚 ∈ (1...𝑁) → (𝑇‘𝑚) = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) |
58 | 57 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (𝑇‘𝑚) = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) |
59 | 58 | eleq1d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ 〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) |
60 | | opelxp 5626 |
. . . . . 6
⊢
(〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |
61 | 59, 60 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) |
62 | 61 | notbid 318 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) |
63 | | ianor 979 |
. . . 4
⊢ (¬
((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) ↔ (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |
64 | 62, 63 | bitrdi 287 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) |
65 | 64 | rexbidva 3226 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) |
66 | 52, 65 | mpbid 231 |
1
⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |