Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem10 Structured version   Visualization version   GIF version

Theorem erdszelem10 32504
 Description: Lemma for erdsze 32506. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
erdszelem.r (𝜑𝑅 ∈ ℕ)
erdszelem.s (𝜑𝑆 ∈ ℕ)
erdszelem.m (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
Assertion
Ref Expression
erdszelem10 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐹   𝑛,𝐼,𝑥,𝑦   𝑛,𝐽,𝑥,𝑦   𝑅,𝑚,𝑥,𝑦   𝑚,𝑁,𝑛,𝑥,𝑦   𝜑,𝑚,𝑛,𝑥,𝑦   𝑆,𝑚,𝑥,𝑦   𝑇,𝑚
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝑇(𝑥,𝑦,𝑛)   𝐼(𝑚)   𝐽(𝑚)

Proof of Theorem erdszelem10
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13344 . . . . . . . 8 (1...(𝑅 − 1)) ∈ Fin
2 fzfi 13344 . . . . . . . 8 (1...(𝑆 − 1)) ∈ Fin
3 xpfi 8786 . . . . . . . 8 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin)
41, 2, 3mp2an 691 . . . . . . 7 ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin
5 ssdomg 8551 . . . . . . 7 (((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin → (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
64, 5ax-mp 5 . . . . . 6 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
7 domnsym 8640 . . . . . 6 (ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
86, 7syl 17 . . . . 5 (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
9 erdszelem.m . . . . . . . 8 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁)
10 hashxp 13800 . . . . . . . . . 10 (((1...(𝑅 − 1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))))
111, 2, 10mp2an 691 . . . . . . . . 9 (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1))))
12 erdszelem.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
13 nnm1nn0 11935 . . . . . . . . . . 11 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
14 hashfz1 13711 . . . . . . . . . . 11 ((𝑅 − 1) ∈ ℕ0 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
1512, 13, 143syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1))
16 erdszelem.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
17 nnm1nn0 11935 . . . . . . . . . . 11 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
18 hashfz1 13711 . . . . . . . . . . 11 ((𝑆 − 1) ∈ ℕ0 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
1916, 17, 183syl 18 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1))
2015, 19oveq12d 7167 . . . . . . . . 9 (𝜑 → ((♯‘(1...(𝑅 − 1))) · (♯‘(1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
2111, 20syl5eq 2871 . . . . . . . 8 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1)))
22 erdsze.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
2322nnnn0d 11952 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
24 hashfz1 13711 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
2523, 24syl 17 . . . . . . . 8 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
269, 21, 253brtr4d 5084 . . . . . . 7 (𝜑 → (♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)))
27 fzfid 13345 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
28 hashsdom 13747 . . . . . . . 8 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
294, 27, 28sylancr 590 . . . . . . 7 (𝜑 → ((♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)))
3026, 29mpbid 235 . . . . . 6 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))
31 erdsze.f . . . . . . . 8 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
32 erdszelem.i . . . . . . . 8 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
33 erdszelem.j . . . . . . . 8 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
34 erdszelem.t . . . . . . . 8 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
3522, 31, 32, 33, 34erdszelem9 32503 . . . . . . 7 (𝜑𝑇:(1...𝑁)–1-1→(ℕ × ℕ))
36 f1f1orn 6617 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇:(1...𝑁)–1-1-onto→ran 𝑇)
37 ovex 7182 . . . . . . . 8 (1...𝑁) ∈ V
3837f1oen 8526 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→ran 𝑇 → (1...𝑁) ≈ ran 𝑇)
3935, 36, 383syl 18 . . . . . 6 (𝜑 → (1...𝑁) ≈ ran 𝑇)
40 sdomentr 8648 . . . . . 6 ((((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁) ∧ (1...𝑁) ≈ ran 𝑇) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
4130, 39, 40syl2anc 587 . . . . 5 (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇)
428, 41nsyl3 140 . . . 4 (𝜑 → ¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
43 nss 4015 . . . . 5 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
44 df-rex 3139 . . . . 5 (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4543, 44bitr4i 281 . . . 4 (¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
4642, 45sylib 221 . . 3 (𝜑 → ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
47 f1fn 6566 . . . 4 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇 Fn (1...𝑁))
48 eleq1 2903 . . . . . 6 (𝑠 = (𝑇𝑚) → (𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
4948notbid 321 . . . . 5 (𝑠 = (𝑇𝑚) → (¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5049rexrn 6844 . . . 4 (𝑇 Fn (1...𝑁) → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5135, 47, 503syl 18 . . 3 (𝜑 → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
5246, 51mpbid 235 . 2 (𝜑 → ∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))
53 fveq2 6661 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐼𝑛) = (𝐼𝑚))
54 fveq2 6661 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐽𝑛) = (𝐽𝑚))
5553, 54opeq12d 4797 . . . . . . . . 9 (𝑛 = 𝑚 → ⟨(𝐼𝑛), (𝐽𝑛)⟩ = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
56 opex 5343 . . . . . . . . 9 ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ V
5755, 34, 56fvmpt 6759 . . . . . . . 8 (𝑚 ∈ (1...𝑁) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5857adantl 485 . . . . . . 7 ((𝜑𝑚 ∈ (1...𝑁)) → (𝑇𝑚) = ⟨(𝐼𝑚), (𝐽𝑚)⟩)
5958eleq1d 2900 . . . . . 6 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))))
60 opelxp 5578 . . . . . 6 (⟨(𝐼𝑚), (𝐽𝑚)⟩ ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6159, 60syl6bb 290 . . . . 5 ((𝜑𝑚 ∈ (1...𝑁)) → ((𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6261notbid 321 . . . 4 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
63 ianor 979 . . . 4 (¬ ((𝐼𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽𝑚) ∈ (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
6462, 63syl6bb 290 . . 3 ((𝜑𝑚 ∈ (1...𝑁)) → (¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6564rexbidva 3288 . 2 (𝜑 → (∃𝑚 ∈ (1...𝑁) ¬ (𝑇𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1)))))
6652, 65mpbid 235 1 (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽𝑚) ∈ (1...(𝑆 − 1))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538  ∃wex 1781   ∈ wcel 2115  ∃wrex 3134  {crab 3137   ⊆ wss 3919  𝒫 cpw 4522  ⟨cop 4556   class class class wbr 5052   ↦ cmpt 5132   × cxp 5540  ◡ccnv 5541  ran crn 5543   ↾ cres 5544   “ cima 5545   Fn wfn 6338  –1-1→wf1 6340  –1-1-onto→wf1o 6342  ‘cfv 6343   Isom wiso 6344  (class class class)co 7149   ≈ cen 8502   ≼ cdom 8503   ≺ csdm 8504  Fincfn 8505  supcsup 8901  ℝcr 10534  1c1 10536   · cmul 10540   < clt 10673   − cmin 10868  ℕcn 11634  ℕ0cn0 11894  ...cfz 12894  ♯chash 13695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-hash 13696 This theorem is referenced by:  erdszelem11  32505
 Copyright terms: Public domain W3C validator