| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fzfi 14013 | . . . . . . . 8
⊢
(1...(𝑅 − 1))
∈ Fin | 
| 2 |  | fzfi 14013 | . . . . . . . 8
⊢
(1...(𝑆 − 1))
∈ Fin | 
| 3 |  | xpfi 9358 | . . . . . . . 8
⊢
(((1...(𝑅 −
1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ∈
Fin) | 
| 4 | 1, 2, 3 | mp2an 692 | . . . . . . 7
⊢
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ∈ Fin | 
| 5 |  | ssdomg 9040 | . . . . . . 7
⊢
(((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ∈ Fin → (ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 6 | 4, 5 | ax-mp 5 | . . . . . 6
⊢ (ran
𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ran 𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) | 
| 7 |  | domnsym 9139 | . . . . . 6
⊢ (ran
𝑇 ≼ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ≺ ran 𝑇) | 
| 8 | 6, 7 | syl 17 | . . . . 5
⊢ (ran
𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) → ¬
((1...(𝑅 − 1))
× (1...(𝑆 −
1))) ≺ ran 𝑇) | 
| 9 |  | erdszelem.m | . . . . . . . 8
⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) | 
| 10 |  | hashxp 14473 | . . . . . . . . . 10
⊢
(((1...(𝑅 −
1)) ∈ Fin ∧ (1...(𝑆 − 1)) ∈ Fin) →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) = ((♯‘(1...(𝑅 − 1))) ·
(♯‘(1...(𝑆
− 1))))) | 
| 11 | 1, 2, 10 | mp2an 692 | . . . . . . . . 9
⊢
(♯‘((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) = ((♯‘(1...(𝑅 − 1))) ·
(♯‘(1...(𝑆
− 1)))) | 
| 12 |  | erdszelem.r | . . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℕ) | 
| 13 |  | nnm1nn0 12567 | . . . . . . . . . . 11
⊢ (𝑅 ∈ ℕ → (𝑅 − 1) ∈
ℕ0) | 
| 14 |  | hashfz1 14385 | . . . . . . . . . . 11
⊢ ((𝑅 − 1) ∈
ℕ0 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1)) | 
| 15 | 12, 13, 14 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑅 − 1))) = (𝑅 − 1)) | 
| 16 |  | erdszelem.s | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ ℕ) | 
| 17 |  | nnm1nn0 12567 | . . . . . . . . . . 11
⊢ (𝑆 ∈ ℕ → (𝑆 − 1) ∈
ℕ0) | 
| 18 |  | hashfz1 14385 | . . . . . . . . . . 11
⊢ ((𝑆 − 1) ∈
ℕ0 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1)) | 
| 19 | 16, 17, 18 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑆 − 1))) = (𝑆 − 1)) | 
| 20 | 15, 19 | oveq12d 7449 | . . . . . . . . 9
⊢ (𝜑 →
((♯‘(1...(𝑅
− 1))) · (♯‘(1...(𝑆 − 1)))) = ((𝑅 − 1) · (𝑆 − 1))) | 
| 21 | 11, 20 | eqtrid 2789 | . . . . . . . 8
⊢ (𝜑 →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) = ((𝑅 −
1) · (𝑆 −
1))) | 
| 22 |  | erdsze.n | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 23 | 22 | nnnn0d 12587 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 24 |  | hashfz1 14385 | . . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) | 
| 25 | 23, 24 | syl 17 | . . . . . . . 8
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) | 
| 26 | 9, 21, 25 | 3brtr4d 5175 | . . . . . . 7
⊢ (𝜑 →
(♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁))) | 
| 27 |  | fzfid 14014 | . . . . . . . 8
⊢ (𝜑 → (1...𝑁) ∈ Fin) | 
| 28 |  | hashsdom 14420 | . . . . . . . 8
⊢
((((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ∈ Fin ∧ (1...𝑁) ∈ Fin) →
((♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))) | 
| 29 | 4, 27, 28 | sylancr 587 | . . . . . . 7
⊢ (𝜑 →
((♯‘((1...(𝑅
− 1)) × (1...(𝑆
− 1)))) < (♯‘(1...𝑁)) ↔ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁))) | 
| 30 | 26, 29 | mpbid 232 | . . . . . 6
⊢ (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ (1...𝑁)) | 
| 31 |  | erdsze.f | . . . . . . . 8
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) | 
| 32 |  | erdszelem.i | . . . . . . . 8
⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | 
| 33 |  | erdszelem.j | . . . . . . . 8
⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) | 
| 34 |  | erdszelem.t | . . . . . . . 8
⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) | 
| 35 | 22, 31, 32, 33, 34 | erdszelem9 35204 | . . . . . . 7
⊢ (𝜑 → 𝑇:(1...𝑁)–1-1→(ℕ × ℕ)) | 
| 36 |  | f1f1orn 6859 | . . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇:(1...𝑁)–1-1-onto→ran
𝑇) | 
| 37 |  | ovex 7464 | . . . . . . . 8
⊢
(1...𝑁) ∈
V | 
| 38 | 37 | f1oen 9013 | . . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1-onto→ran
𝑇 → (1...𝑁) ≈ ran 𝑇) | 
| 39 | 35, 36, 38 | 3syl 18 | . . . . . 6
⊢ (𝜑 → (1...𝑁) ≈ ran 𝑇) | 
| 40 |  | sdomentr 9151 | . . . . . 6
⊢
((((1...(𝑅 −
1)) × (1...(𝑆 −
1))) ≺ (1...𝑁) ∧
(1...𝑁) ≈ ran 𝑇) → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇) | 
| 41 | 30, 39, 40 | syl2anc 584 | . . . . 5
⊢ (𝜑 → ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ≺ ran 𝑇) | 
| 42 | 8, 41 | nsyl3 138 | . . . 4
⊢ (𝜑 → ¬ ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) | 
| 43 |  | nss 4048 | . . . . 5
⊢ (¬
ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔
∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 44 |  | df-rex 3071 | . . . . 5
⊢
(∃𝑠 ∈ ran
𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑠(𝑠 ∈ ran 𝑇 ∧ ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 45 | 43, 44 | bitr4i 278 | . . . 4
⊢ (¬
ran 𝑇 ⊆ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔
∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) | 
| 46 | 42, 45 | sylib 218 | . . 3
⊢ (𝜑 → ∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) | 
| 47 |  | f1fn 6805 | . . . 4
⊢ (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) → 𝑇 Fn (1...𝑁)) | 
| 48 |  | eleq1 2829 | . . . . . 6
⊢ (𝑠 = (𝑇‘𝑚) → (𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 49 | 48 | notbid 318 | . . . . 5
⊢ (𝑠 = (𝑇‘𝑚) → (¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 50 | 49 | rexrn 7107 | . . . 4
⊢ (𝑇 Fn (1...𝑁) → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 51 | 35, 47, 50 | 3syl 18 | . . 3
⊢ (𝜑 → (∃𝑠 ∈ ran 𝑇 ¬ 𝑠 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 52 | 46, 51 | mpbid 232 | . 2
⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1)))) | 
| 53 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐼‘𝑛) = (𝐼‘𝑚)) | 
| 54 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐽‘𝑛) = (𝐽‘𝑚)) | 
| 55 | 53, 54 | opeq12d 4881 | . . . . . . . . 9
⊢ (𝑛 = 𝑚 → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) | 
| 56 |  | opex 5469 | . . . . . . . . 9
⊢
〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ V | 
| 57 | 55, 34, 56 | fvmpt 7016 | . . . . . . . 8
⊢ (𝑚 ∈ (1...𝑁) → (𝑇‘𝑚) = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) | 
| 58 | 57 | adantl 481 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (𝑇‘𝑚) = 〈(𝐼‘𝑚), (𝐽‘𝑚)〉) | 
| 59 | 58 | eleq1d 2826 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ 〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))))) | 
| 60 |  | opelxp 5721 | . . . . . 6
⊢
(〈(𝐼‘𝑚), (𝐽‘𝑚)〉 ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) | 
| 61 | 59, 60 | bitrdi 287 | . . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ((𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) | 
| 62 | 61 | notbid 318 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ¬ ((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) | 
| 63 |  | ianor 984 | . . . 4
⊢ (¬
((𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∧ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))) ↔ (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) | 
| 64 | 62, 63 | bitrdi 287 | . . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ (¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) | 
| 65 | 64 | rexbidva 3177 | . 2
⊢ (𝜑 → (∃𝑚 ∈ (1...𝑁) ¬ (𝑇‘𝑚) ∈ ((1...(𝑅 − 1)) × (1...(𝑆 − 1))) ↔ ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1))))) | 
| 66 | 52, 65 | mpbid 232 | 1
⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) |