MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmcyg Structured version   Visualization version   GIF version

Theorem prmcyg 19926
Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
prmcyg ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)

Proof of Theorem prmcyg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1nprm 16712 . . . 4 ¬ 1 ∈ ℙ
2 simpr 484 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 𝐵 ⊆ {(0g𝐺)})
3 cygctb.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
4 eqid 2734 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
53, 4grpidcl 18995 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
65snssd 4813 . . . . . . . . . 10 (𝐺 ∈ Grp → {(0g𝐺)} ⊆ 𝐵)
76ad2antrr 726 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → {(0g𝐺)} ⊆ 𝐵)
82, 7eqssd 4012 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 𝐵 = {(0g𝐺)})
98fveq2d 6910 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) = (♯‘{(0g𝐺)}))
10 fvex 6919 . . . . . . . 8 (0g𝐺) ∈ V
11 hashsng 14404 . . . . . . . 8 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
1210, 11ax-mp 5 . . . . . . 7 (♯‘{(0g𝐺)}) = 1
139, 12eqtrdi 2790 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) = 1)
14 simplr 769 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) ∈ ℙ)
1513, 14eqeltrrd 2839 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 1 ∈ ℙ)
1615ex 412 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → (𝐵 ⊆ {(0g𝐺)} → 1 ∈ ℙ))
171, 16mtoi 199 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → ¬ 𝐵 ⊆ {(0g𝐺)})
18 nss 4059 . . 3 𝐵 ⊆ {(0g𝐺)} ↔ ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)}))
1917, 18sylib 218 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)}))
20 eqid 2734 . . 3 (od‘𝐺) = (od‘𝐺)
21 simpll 767 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐺 ∈ Grp)
22 simprl 771 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝑥𝐵)
23 simprr 773 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ¬ 𝑥 ∈ {(0g𝐺)})
2420, 4, 3odeq1 19592 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g𝐺)))
2521, 22, 24syl2anc 584 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g𝐺)))
26 velsn 4646 . . . . . 6 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
2725, 26bitr4di 289 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 ∈ {(0g𝐺)}))
2823, 27mtbird 325 . . . 4 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ¬ ((od‘𝐺)‘𝑥) = 1)
29 prmnn 16707 . . . . . . . . . 10 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
3029ad2antlr 727 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℕ)
3130nnnn0d 12584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℕ0)
323fvexi 6920 . . . . . . . . 9 𝐵 ∈ V
33 hashclb 14393 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3432, 33ax-mp 5 . . . . . . . 8 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3531, 34sylibr 234 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐵 ∈ Fin)
363, 20oddvds2 19598 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
3721, 35, 22, 36syl3anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
38 simplr 769 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℙ)
393, 20odcl2 19597 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
4021, 35, 22, 39syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) ∈ ℕ)
41 dvdsprime 16720 . . . . . . 7 (((♯‘𝐵) ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)))
4238, 40, 41syl2anc 584 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)))
4337, 42mpbid 232 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))
4443ord 864 . . . 4 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (¬ ((od‘𝐺)‘𝑥) = (♯‘𝐵) → ((od‘𝐺)‘𝑥) = 1))
4528, 44mt3d 148 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
463, 20, 21, 22, 45iscygodd 19920 . 2 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐺 ∈ CycGrp)
4719, 46exlimddv 1932 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wex 1775  wcel 2105  Vcvv 3477  wss 3962  {csn 4630   class class class wbr 5147  cfv 6562  Fincfn 8983  1c1 11153  cn 12263  0cn0 12523  chash 14365  cdvds 16286  cprime 16704  Basecbs 17244  0gc0g 17485  Grpcgrp 18963  odcod 19556  CycGrpccyg 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-prm 16705  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-eqg 19155  df-od 19560  df-cyg 19910
This theorem is referenced by:  lt6abl  19927  prmsimpcyc  33216
  Copyright terms: Public domain W3C validator