MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmcyg Structured version   Visualization version   GIF version

Theorem prmcyg 19936
Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
cygctb.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
prmcyg ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)

Proof of Theorem prmcyg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1nprm 16726 . . . 4 ¬ 1 ∈ ℙ
2 simpr 484 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 𝐵 ⊆ {(0g𝐺)})
3 cygctb.1 . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
4 eqid 2740 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
53, 4grpidcl 19005 . . . . . . . . . . 11 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
65snssd 4834 . . . . . . . . . 10 (𝐺 ∈ Grp → {(0g𝐺)} ⊆ 𝐵)
76ad2antrr 725 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → {(0g𝐺)} ⊆ 𝐵)
82, 7eqssd 4026 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 𝐵 = {(0g𝐺)})
98fveq2d 6924 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) = (♯‘{(0g𝐺)}))
10 fvex 6933 . . . . . . . 8 (0g𝐺) ∈ V
11 hashsng 14418 . . . . . . . 8 ((0g𝐺) ∈ V → (♯‘{(0g𝐺)}) = 1)
1210, 11ax-mp 5 . . . . . . 7 (♯‘{(0g𝐺)}) = 1
139, 12eqtrdi 2796 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) = 1)
14 simplr 768 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → (♯‘𝐵) ∈ ℙ)
1513, 14eqeltrrd 2845 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ 𝐵 ⊆ {(0g𝐺)}) → 1 ∈ ℙ)
1615ex 412 . . . 4 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → (𝐵 ⊆ {(0g𝐺)} → 1 ∈ ℙ))
171, 16mtoi 199 . . 3 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → ¬ 𝐵 ⊆ {(0g𝐺)})
18 nss 4073 . . 3 𝐵 ⊆ {(0g𝐺)} ↔ ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)}))
1917, 18sylib 218 . 2 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)}))
20 eqid 2740 . . 3 (od‘𝐺) = (od‘𝐺)
21 simpll 766 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐺 ∈ Grp)
22 simprl 770 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝑥𝐵)
23 simprr 772 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ¬ 𝑥 ∈ {(0g𝐺)})
2420, 4, 3odeq1 19602 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g𝐺)))
2521, 22, 24syl2anc 583 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 = (0g𝐺)))
26 velsn 4664 . . . . . 6 (𝑥 ∈ {(0g𝐺)} ↔ 𝑥 = (0g𝐺))
2725, 26bitr4di 289 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = 1 ↔ 𝑥 ∈ {(0g𝐺)}))
2823, 27mtbird 325 . . . 4 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ¬ ((od‘𝐺)‘𝑥) = 1)
29 prmnn 16721 . . . . . . . . . 10 ((♯‘𝐵) ∈ ℙ → (♯‘𝐵) ∈ ℕ)
3029ad2antlr 726 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℕ)
3130nnnn0d 12613 . . . . . . . 8 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℕ0)
323fvexi 6934 . . . . . . . . 9 𝐵 ∈ V
33 hashclb 14407 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0))
3432, 33ax-mp 5 . . . . . . . 8 (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)
3531, 34sylibr 234 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐵 ∈ Fin)
363, 20oddvds2 19608 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
3721, 35, 22, 36syl3anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
38 simplr 768 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (♯‘𝐵) ∈ ℙ)
393, 20odcl2 19607 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ)
4021, 35, 22, 39syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) ∈ ℕ)
41 dvdsprime 16734 . . . . . . 7 (((♯‘𝐵) ∈ ℙ ∧ ((od‘𝐺)‘𝑥) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)))
4238, 40, 41syl2anc 583 . . . . . 6 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1)))
4337, 42mpbid 232 . . . . 5 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ∨ ((od‘𝐺)‘𝑥) = 1))
4443ord 863 . . . 4 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → (¬ ((od‘𝐺)‘𝑥) = (♯‘𝐵) → ((od‘𝐺)‘𝑥) = 1))
4528, 44mt3d 148 . . 3 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → ((od‘𝐺)‘𝑥) = (♯‘𝐵))
463, 20, 21, 22, 45iscygodd 19930 . 2 (((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) ∧ (𝑥𝐵 ∧ ¬ 𝑥 ∈ {(0g𝐺)})) → 𝐺 ∈ CycGrp)
4719, 46exlimddv 1934 1 ((𝐺 ∈ Grp ∧ (♯‘𝐵) ∈ ℙ) → 𝐺 ∈ CycGrp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  wss 3976  {csn 4648   class class class wbr 5166  cfv 6573  Fincfn 9003  1c1 11185  cn 12293  0cn0 12553  chash 14379  cdvds 16302  cprime 16718  Basecbs 17258  0gc0g 17499  Grpcgrp 18973  odcod 19566  CycGrpccyg 19919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-prm 16719  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-od 19570  df-cyg 19920
This theorem is referenced by:  lt6abl  19937  prmsimpcyc  33207
  Copyright terms: Public domain W3C validator