| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onin | Structured version Visualization version GIF version | ||
| Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| onin | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6321 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6321 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordin 6341 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ∩ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
| 6 | inex1g 5259 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐵) ∈ V) | |
| 7 | elong 6319 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) | |
| 8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-uni 4859 df-tr 5201 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: tfrlem5 8305 noreson 27600 ontopbas 36493 |
| Copyright terms: Public domain | W3C validator |