Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onin | Structured version Visualization version GIF version |
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
onin | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6261 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordin 6281 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ∩ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
6 | inex1g 5238 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐵) ∈ V) | |
7 | elong 6259 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) | |
8 | 5, 6, 7 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) |
9 | 4, 8 | mpbird 256 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: tfrlem5 8182 noreson 33790 ontopbas 34544 |
Copyright terms: Public domain | W3C validator |