MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Structured version   Visualization version   GIF version

Theorem onin 6282
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onin
StepHypRef Expression
1 eloni 6261 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6261 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordin 6281 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴𝐵))
5 simpl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 inex1g 5238 . . 3 (𝐴 ∈ On → (𝐴𝐵) ∈ V)
7 elong 6259 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
85, 6, 73syl 18 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
94, 8mpbird 256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422  cin 3882  Ord word 6250  Oncon0 6251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-tr 5188  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255
This theorem is referenced by:  tfrlem5  8182  noreson  33790  ontopbas  34544
  Copyright terms: Public domain W3C validator