MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Structured version   Visualization version   GIF version

Theorem onin 6386
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onin
StepHypRef Expression
1 eloni 6365 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6365 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordin 6385 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴𝐵))
5 simpl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 inex1g 5310 . . 3 (𝐴 ∈ On → (𝐴𝐵) ∈ V)
7 elong 6363 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
85, 6, 73syl 18 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
94, 8mpbird 257 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  Vcvv 3466  cin 3940  Ord word 6354  Oncon0 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rab 3425  df-v 3468  df-in 3948  df-ss 3958  df-uni 4901  df-tr 5257  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-ord 6358  df-on 6359
This theorem is referenced by:  tfrlem5  8376  noreson  27512  ontopbas  35804
  Copyright terms: Public domain W3C validator