MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onin Structured version   Visualization version   GIF version

Theorem onin 6338
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)

Proof of Theorem onin
StepHypRef Expression
1 eloni 6317 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6317 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordin 6337 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
41, 2, 3syl2an 597 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴𝐵))
5 simpl 484 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 inex1g 5268 . . 3 (𝐴 ∈ On → (𝐴𝐵) ∈ V)
7 elong 6315 . . 3 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
85, 6, 73syl 18 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵) ∈ On ↔ Ord (𝐴𝐵)))
94, 8mpbird 257 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2106  Vcvv 3442  cin 3901  Ord word 6306  Oncon0 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5248
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rab 3405  df-v 3444  df-in 3909  df-ss 3919  df-uni 4858  df-tr 5215  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-ord 6310  df-on 6311
This theorem is referenced by:  tfrlem5  8286  noreson  26914  ontopbas  34754
  Copyright terms: Public domain W3C validator