Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . 3
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | | vex 3435 |
. . 3
⊢ 𝑔 ∈ V |
3 | 1, 2 | tfrlem3a 8199 |
. 2
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
4 | | vex 3435 |
. . 3
⊢ ℎ ∈ V |
5 | 1, 4 | tfrlem3a 8199 |
. 2
⊢ (ℎ ∈ 𝐴 ↔ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
6 | | reeanv 3295 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))))) |
7 | | fveq2 6771 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (𝑔‘𝑎) = (𝑔‘𝑥)) |
8 | | fveq2 6771 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (ℎ‘𝑎) = (ℎ‘𝑥)) |
9 | 7, 8 | eqeq12d 2756 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → ((𝑔‘𝑎) = (ℎ‘𝑎) ↔ (𝑔‘𝑥) = (ℎ‘𝑥))) |
10 | | onin 6296 |
. . . . . . . . 9
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ∩ 𝑤) ∈ On) |
11 | 10 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ∈ On) |
12 | | simp2ll 1239 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑔 Fn 𝑧) |
13 | | fnfun 6531 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑧 → Fun 𝑔) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun 𝑔) |
15 | | inss1 4168 |
. . . . . . . . . 10
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑧 |
16 | 12 | fndmd 6536 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom 𝑔 = 𝑧) |
17 | 15, 16 | sseqtrrid 3979 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom 𝑔) |
18 | 14, 17 | jca 512 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun 𝑔 ∧ (𝑧 ∩ 𝑤) ⊆ dom 𝑔)) |
19 | | simp2rl 1241 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ℎ Fn 𝑤) |
20 | | fnfun 6531 |
. . . . . . . . . 10
⊢ (ℎ Fn 𝑤 → Fun ℎ) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → Fun ℎ) |
22 | | inss2 4169 |
. . . . . . . . . 10
⊢ (𝑧 ∩ 𝑤) ⊆ 𝑤 |
23 | 19 | fndmd 6536 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → dom ℎ = 𝑤) |
24 | 22, 23 | sseqtrrid 3979 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑧 ∩ 𝑤) ⊆ dom ℎ) |
25 | 21, 24 | jca 512 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (Fun ℎ ∧ (𝑧 ∩ 𝑤) ⊆ dom ℎ)) |
26 | | simp2lr 1240 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
27 | | ssralv 3992 |
. . . . . . . . 9
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑧 → (∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎)))) |
28 | 15, 26, 27 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) |
29 | | simp2rr 1242 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
30 | | ssralv 3992 |
. . . . . . . . 9
⊢ ((𝑧 ∩ 𝑤) ⊆ 𝑤 → (∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) |
31 | 22, 29, 30 | mpsyl 68 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎))) |
32 | 11, 18, 25, 28, 31 | tfrlem1 8198 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → ∀𝑎 ∈ (𝑧 ∩ 𝑤)(𝑔‘𝑎) = (ℎ‘𝑎)) |
33 | | simp3l 1200 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥𝑔𝑢) |
34 | | fnbr 6539 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑧 ∧ 𝑥𝑔𝑢) → 𝑥 ∈ 𝑧) |
35 | 12, 33, 34 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑧) |
36 | | simp3r 1201 |
. . . . . . . . 9
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥ℎ𝑣) |
37 | | fnbr 6539 |
. . . . . . . . 9
⊢ ((ℎ Fn 𝑤 ∧ 𝑥ℎ𝑣) → 𝑥 ∈ 𝑤) |
38 | 19, 36, 37 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ 𝑤) |
39 | 35, 38 | elind 4133 |
. . . . . . 7
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑥 ∈ (𝑧 ∩ 𝑤)) |
40 | 9, 32, 39 | rspcdva 3563 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = (ℎ‘𝑥)) |
41 | | funbrfv 6817 |
. . . . . . 7
⊢ (Fun
𝑔 → (𝑥𝑔𝑢 → (𝑔‘𝑥) = 𝑢)) |
42 | 14, 33, 41 | sylc 65 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (𝑔‘𝑥) = 𝑢) |
43 | | funbrfv 6817 |
. . . . . . 7
⊢ (Fun
ℎ → (𝑥ℎ𝑣 → (ℎ‘𝑥) = 𝑣)) |
44 | 21, 36, 43 | sylc 65 |
. . . . . 6
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → (ℎ‘𝑥) = 𝑣) |
45 | 40, 42, 44 | 3eqtr3d 2788 |
. . . . 5
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) ∧ (𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣)) → 𝑢 = 𝑣) |
46 | 45 | 3exp 1118 |
. . . 4
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣))) |
47 | 46 | rexlimivv 3223 |
. . 3
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
48 | 6, 47 | sylbir 234 |
. 2
⊢
((∃𝑧 ∈ On
(𝑔 Fn 𝑧 ∧ ∀𝑎 ∈ 𝑧 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ 𝑎))) ∧ ∃𝑤 ∈ On (ℎ Fn 𝑤 ∧ ∀𝑎 ∈ 𝑤 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ 𝑎)))) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
49 | 3, 5, 48 | syl2anb 598 |
1
⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |