MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem5 Structured version   Visualization version   GIF version

Theorem tfrlem5 8299
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem5 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,,𝑢,𝑣,𝐹   𝐴,𝑔,
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓)

Proof of Theorem tfrlem5
Dummy variables 𝑧 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 3440 . . 3 𝑔 ∈ V
31, 2tfrlem3a 8296 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
4 vex 3440 . . 3 ∈ V
51, 4tfrlem3a 8296 . 2 (𝐴 ↔ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎))))
6 reeanv 3204 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))))
7 fveq2 6822 . . . . . . . 8 (𝑎 = 𝑥 → (𝑔𝑎) = (𝑔𝑥))
8 fveq2 6822 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎) = (𝑥))
97, 8eqeq12d 2747 . . . . . . 7 (𝑎 = 𝑥 → ((𝑔𝑎) = (𝑎) ↔ (𝑔𝑥) = (𝑥)))
10 onin 6337 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤) ∈ On)
11103ad2ant1 1133 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ∈ On)
12 simp2ll 1241 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑔 Fn 𝑧)
13 fnfun 6581 . . . . . . . . . 10 (𝑔 Fn 𝑧 → Fun 𝑔)
1412, 13syl 17 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun 𝑔)
15 inss1 4184 . . . . . . . . . 10 (𝑧𝑤) ⊆ 𝑧
1612fndmd 6586 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom 𝑔 = 𝑧)
1715, 16sseqtrrid 3973 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom 𝑔)
1814, 17jca 511 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun 𝑔 ∧ (𝑧𝑤) ⊆ dom 𝑔))
19 simp2rl 1243 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fn 𝑤)
20 fnfun 6581 . . . . . . . . . 10 ( Fn 𝑤 → Fun )
2119, 20syl 17 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun )
22 inss2 4185 . . . . . . . . . 10 (𝑧𝑤) ⊆ 𝑤
2319fndmd 6586 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom = 𝑤)
2422, 23sseqtrrid 3973 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom )
2521, 24jca 511 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun ∧ (𝑧𝑤) ⊆ dom ))
26 simp2lr 1242 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)))
27 ssralv 3998 . . . . . . . . 9 ((𝑧𝑤) ⊆ 𝑧 → (∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎))))
2815, 26, 27mpsyl 68 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎)))
29 simp2rr 1244 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))
30 ssralv 3998 . . . . . . . . 9 ((𝑧𝑤) ⊆ 𝑤 → (∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎))))
3122, 29, 30mpsyl 68 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎)))
3211, 18, 25, 28, 31tfrlem1 8295 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎))
33 simp3l 1202 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑔𝑢)
34 fnbr 6589 . . . . . . . . 9 ((𝑔 Fn 𝑧𝑥𝑔𝑢) → 𝑥𝑧)
3512, 33, 34syl2anc 584 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑧)
36 simp3r 1203 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑣)
37 fnbr 6589 . . . . . . . . 9 (( Fn 𝑤𝑥𝑣) → 𝑥𝑤)
3819, 36, 37syl2anc 584 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑤)
3935, 38elind 4147 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥 ∈ (𝑧𝑤))
409, 32, 39rspcdva 3573 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = (𝑥))
41 funbrfv 6870 . . . . . . 7 (Fun 𝑔 → (𝑥𝑔𝑢 → (𝑔𝑥) = 𝑢))
4214, 33, 41sylc 65 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = 𝑢)
43 funbrfv 6870 . . . . . . 7 (Fun → (𝑥𝑣 → (𝑥) = 𝑣))
4421, 36, 43sylc 65 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥) = 𝑣)
4540, 42, 443eqtr3d 2774 . . . . 5 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑢 = 𝑣)
46453exp 1119 . . . 4 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
4746rexlimivv 3174 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
486, 47sylbir 235 . 2 ((∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
493, 5, 48syl2anb 598 1 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  cin 3896  wss 3897   class class class wbr 5089  dom cdm 5614  cres 5616  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  tfrlem7  8302
  Copyright terms: Public domain W3C validator