Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem5 Structured version   Visualization version   GIF version

Theorem tfrlem5 7759
 Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem5 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,,𝑢,𝑣,𝐹   𝐴,𝑔,
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓)

Proof of Theorem tfrlem5
Dummy variables 𝑧 𝑎 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 vex 3400 . . 3 𝑔 ∈ V
31, 2tfrlem3a 7756 . 2 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))))
4 vex 3400 . . 3 ∈ V
51, 4tfrlem3a 7756 . 2 (𝐴 ↔ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎))))
6 reeanv 3292 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ↔ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))))
7 fveq2 6446 . . . . . . . 8 (𝑎 = 𝑥 → (𝑔𝑎) = (𝑔𝑥))
8 fveq2 6446 . . . . . . . 8 (𝑎 = 𝑥 → (𝑎) = (𝑥))
97, 8eqeq12d 2792 . . . . . . 7 (𝑎 = 𝑥 → ((𝑔𝑎) = (𝑎) ↔ (𝑔𝑥) = (𝑥)))
10 onin 6007 . . . . . . . . 9 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧𝑤) ∈ On)
11103ad2ant1 1124 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ∈ On)
12 simp2ll 1278 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑔 Fn 𝑧)
13 fnfun 6233 . . . . . . . . . 10 (𝑔 Fn 𝑧 → Fun 𝑔)
1412, 13syl 17 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun 𝑔)
15 inss1 4052 . . . . . . . . . 10 (𝑧𝑤) ⊆ 𝑧
16 fndm 6235 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
1712, 16syl 17 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom 𝑔 = 𝑧)
1815, 17syl5sseqr 3872 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom 𝑔)
1914, 18jca 507 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun 𝑔 ∧ (𝑧𝑤) ⊆ dom 𝑔))
20 simp2rl 1280 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fn 𝑤)
21 fnfun 6233 . . . . . . . . . 10 ( Fn 𝑤 → Fun )
2220, 21syl 17 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → Fun )
23 inss2 4053 . . . . . . . . . 10 (𝑧𝑤) ⊆ 𝑤
24 fndm 6235 . . . . . . . . . . 11 ( Fn 𝑤 → dom = 𝑤)
2520, 24syl 17 . . . . . . . . . 10 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → dom = 𝑤)
2623, 25syl5sseqr 3872 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑧𝑤) ⊆ dom )
2722, 26jca 507 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (Fun ∧ (𝑧𝑤) ⊆ dom ))
28 simp2lr 1279 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)))
29 ssralv 3884 . . . . . . . . 9 ((𝑧𝑤) ⊆ 𝑧 → (∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎))))
3015, 28, 29mpsyl 68 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝐹‘(𝑔𝑎)))
31 simp2rr 1281 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))
32 ssralv 3884 . . . . . . . . 9 ((𝑧𝑤) ⊆ 𝑤 → (∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎))))
3323, 31, 32mpsyl 68 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑎) = (𝐹‘(𝑎)))
3411, 19, 27, 30, 33tfrlem1 7755 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → ∀𝑎 ∈ (𝑧𝑤)(𝑔𝑎) = (𝑎))
35 simp3l 1215 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑔𝑢)
36 fnbr 6239 . . . . . . . . 9 ((𝑔 Fn 𝑧𝑥𝑔𝑢) → 𝑥𝑧)
3712, 35, 36syl2anc 579 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑧)
38 simp3r 1216 . . . . . . . . 9 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑣)
39 fnbr 6239 . . . . . . . . 9 (( Fn 𝑤𝑥𝑣) → 𝑥𝑤)
4020, 38, 39syl2anc 579 . . . . . . . 8 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥𝑤)
4137, 40elind 4020 . . . . . . 7 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑥 ∈ (𝑧𝑤))
429, 34, 41rspcdva 3516 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = (𝑥))
43 funbrfv 6493 . . . . . . 7 (Fun 𝑔 → (𝑥𝑔𝑢 → (𝑔𝑥) = 𝑢))
4414, 35, 43sylc 65 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑔𝑥) = 𝑢)
45 funbrfv 6493 . . . . . . 7 (Fun → (𝑥𝑣 → (𝑥) = 𝑣))
4622, 38, 45sylc 65 . . . . . 6 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → (𝑥) = 𝑣)
4742, 44, 463eqtr3d 2821 . . . . 5 (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) ∧ (𝑥𝑔𝑢𝑥𝑣)) → 𝑢 = 𝑣)
48473exp 1109 . . . 4 ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣)))
4948rexlimivv 3218 . . 3 (∃𝑧 ∈ On ∃𝑤 ∈ On ((𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
506, 49sylbir 227 . 2 ((∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑎𝑧 (𝑔𝑎) = (𝐹‘(𝑔𝑎))) ∧ ∃𝑤 ∈ On ( Fn 𝑤 ∧ ∀𝑎𝑤 (𝑎) = (𝐹‘(𝑎)))) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
513, 5, 50syl2anb 591 1 ((𝑔𝐴𝐴) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106  {cab 2762  ∀wral 3089  ∃wrex 3090   ∩ cin 3790   ⊆ wss 3791   class class class wbr 4886  dom cdm 5355   ↾ cres 5357  Oncon0 5976  Fun wfun 6129   Fn wfn 6130  ‘cfv 6135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-ord 5979  df-on 5980  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143 This theorem is referenced by:  tfrlem7  7762
 Copyright terms: Public domain W3C validator