MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noreson Structured version   Visualization version   GIF version

Theorem noreson 27579
Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.)
Assertion
Ref Expression
noreson ((𝐴 No 𝐵 ∈ On) → (𝐴𝐵) ∈ No )

Proof of Theorem noreson
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elno 27564 . . 3 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
2 onin 6366 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵) ∈ On)
3 fresin 6732 . . . . . . . 8 (𝐴:𝑥⟶{1o, 2o} → (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o})
4 feq2 6670 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → ((𝐴𝐵):𝑦⟶{1o, 2o} ↔ (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o}))
54rspcev 3591 . . . . . . . 8 (((𝑥𝐵) ∈ On ∧ (𝐴𝐵):(𝑥𝐵)⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
62, 3, 5syl2an 596 . . . . . . 7 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴:𝑥⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
76an32s 652 . . . . . 6 (((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
87ex 412 . . . . 5 ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o}))
98rexlimiva 3127 . . . 4 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o}))
109imp 406 . . 3 ((∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
111, 10sylanb 581 . 2 ((𝐴 No 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
12 elno 27564 . 2 ((𝐴𝐵) ∈ No ↔ ∃𝑦 ∈ On (𝐴𝐵):𝑦⟶{1o, 2o})
1311, 12sylibr 234 1 ((𝐴 No 𝐵 ∈ On) → (𝐴𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3054  cin 3916  {cpr 4594  cres 5643  Oncon0 6335  wf 6510  1oc1o 8430  2oc2o 8431   No csur 27558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ord 6338  df-on 6339  df-fun 6516  df-fn 6517  df-f 6518  df-no 27561
This theorem is referenced by:  sltres  27581  nodenselem6  27608  noresle  27616  nosupbnd1lem1  27627  nosupbnd1lem2  27628  nosupbnd1lem6  27632  nosupbnd1  27633  nosupbnd2lem1  27634  nosupbnd2  27635  noinfbnd1lem1  27642  noinfbnd1lem2  27643  noinfbnd1lem6  27647  noinfbnd1  27648  noinfbnd2lem1  27649  noinfbnd2  27650  nosupinfsep  27651  noetasuplem4  27655  noetainflem4  27659
  Copyright terms: Public domain W3C validator