| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noreson | Structured version Visualization version GIF version | ||
| Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| noreson | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27557 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | onin 6363 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∩ 𝐵) ∈ On) | |
| 3 | fresin 6729 | . . . . . . . 8 ⊢ (𝐴:𝑥⟶{1o, 2o} → (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) | |
| 4 | feq2 6667 | . . . . . . . . 9 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝐴 ↾ 𝐵):𝑦⟶{1o, 2o} ↔ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o})) | |
| 5 | 4 | rspcev 3588 | . . . . . . . 8 ⊢ (((𝑥 ∩ 𝐵) ∈ On ∧ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 6 | 2, 3, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴:𝑥⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 7 | 6 | an32s 652 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 8 | 7 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
| 9 | 8 | rexlimiva 3126 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 12 | elno 27557 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∈ No ↔ ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 {cpr 4591 ↾ cres 5640 Oncon0 6332 ⟶wf 6507 1oc1o 8427 2oc2o 8428 No csur 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ord 6335 df-on 6336 df-fun 6513 df-fn 6514 df-f 6515 df-no 27554 |
| This theorem is referenced by: sltres 27574 nodenselem6 27601 noresle 27609 nosupbnd1lem1 27620 nosupbnd1lem2 27621 nosupbnd1lem6 27625 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfbnd1lem1 27635 noinfbnd1lem2 27636 noinfbnd1lem6 27640 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 nosupinfsep 27644 noetasuplem4 27648 noetainflem4 27652 |
| Copyright terms: Public domain | W3C validator |