| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noreson | Structured version Visualization version GIF version | ||
| Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| noreson | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elno 27555 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
| 2 | onin 6338 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∩ 𝐵) ∈ On) | |
| 3 | fresin 6693 | . . . . . . . 8 ⊢ (𝐴:𝑥⟶{1o, 2o} → (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) | |
| 4 | feq2 6631 | . . . . . . . . 9 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝐴 ↾ 𝐵):𝑦⟶{1o, 2o} ↔ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o})) | |
| 5 | 4 | rspcev 3577 | . . . . . . . 8 ⊢ (((𝑥 ∩ 𝐵) ∈ On ∧ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 6 | 2, 3, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴:𝑥⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 7 | 6 | an32s 652 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 8 | 7 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
| 9 | 8 | rexlimiva 3122 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
| 12 | elno 27555 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∈ No ↔ ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) | |
| 13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3902 {cpr 4579 ↾ cres 5621 Oncon0 6307 ⟶wf 6478 1oc1o 8381 2oc2o 8382 No csur 27549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ord 6310 df-on 6311 df-fun 6484 df-fn 6485 df-f 6486 df-no 27552 |
| This theorem is referenced by: sltres 27572 nodenselem6 27599 noresle 27607 nosupbnd1lem1 27618 nosupbnd1lem2 27619 nosupbnd1lem6 27623 nosupbnd1 27624 nosupbnd2lem1 27625 nosupbnd2 27626 noinfbnd1lem1 27633 noinfbnd1lem2 27634 noinfbnd1lem6 27638 noinfbnd1 27639 noinfbnd2lem1 27640 noinfbnd2 27641 nosupinfsep 27642 noetasuplem4 27646 noetainflem4 27650 |
| Copyright terms: Public domain | W3C validator |