![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noreson | Structured version Visualization version GIF version |
Description: The restriction of a surreal to an ordinal is still a surreal. (Contributed by Scott Fenton, 4-Sep-2011.) |
Ref | Expression |
---|---|
noreson | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elno 27705 | . . 3 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) | |
2 | onin 6417 | . . . . . . . 8 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∩ 𝐵) ∈ On) | |
3 | fresin 6778 | . . . . . . . 8 ⊢ (𝐴:𝑥⟶{1o, 2o} → (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) | |
4 | feq2 6718 | . . . . . . . . 9 ⊢ (𝑦 = (𝑥 ∩ 𝐵) → ((𝐴 ↾ 𝐵):𝑦⟶{1o, 2o} ↔ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o})) | |
5 | 4 | rspcev 3622 | . . . . . . . 8 ⊢ (((𝑥 ∩ 𝐵) ∈ On ∧ (𝐴 ↾ 𝐵):(𝑥 ∩ 𝐵)⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
6 | 2, 3, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴:𝑥⟶{1o, 2o}) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
7 | 6 | an32s 652 | . . . . . 6 ⊢ (((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
8 | 7 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
9 | 8 | rexlimiva 3145 | . . . 4 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → (𝐵 ∈ On → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o})) |
10 | 9 | imp 406 | . . 3 ⊢ ((∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
11 | 1, 10 | sylanb 581 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) |
12 | elno 27705 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∈ No ↔ ∃𝑦 ∈ On (𝐴 ↾ 𝐵):𝑦⟶{1o, 2o}) | |
13 | 11, 12 | sylibr 234 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ On) → (𝐴 ↾ 𝐵) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ∃wrex 3068 ∩ cin 3962 {cpr 4633 ↾ cres 5691 Oncon0 6386 ⟶wf 6559 1oc1o 8498 2oc2o 8499 No csur 27699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ord 6389 df-on 6390 df-fun 6565 df-fn 6566 df-f 6567 df-no 27702 |
This theorem is referenced by: sltres 27722 nodenselem6 27749 noresle 27757 nosupbnd1lem1 27768 nosupbnd1lem2 27769 nosupbnd1lem6 27773 nosupbnd1 27774 nosupbnd2lem1 27775 nosupbnd2 27776 noinfbnd1lem1 27783 noinfbnd1lem2 27784 noinfbnd1lem6 27788 noinfbnd1 27789 noinfbnd2lem1 27790 noinfbnd2 27791 nosupinfsep 27792 noetasuplem4 27796 noetainflem4 27800 |
Copyright terms: Public domain | W3C validator |