MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelinxp Structured version   Visualization version   GIF version

Theorem opelinxp 5745
Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.)
Assertion
Ref Expression
opelinxp (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))

Proof of Theorem opelinxp
StepHypRef Expression
1 brinxp2 5743 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
2 df-br 5124 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)))
3 df-br 5124 . . 3 (𝐶𝑅𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑅)
43anbi2i 623 . 2 (((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
51, 2, 43bitr3i 301 1 (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2107  cin 3930  cop 4612   class class class wbr 5123   × cxp 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671
This theorem is referenced by:  elinxp  6017  ssrnres  6178  iss2  38304
  Copyright terms: Public domain W3C validator