MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelinxp Structured version   Visualization version   GIF version

Theorem opelinxp 5662
Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.)
Assertion
Ref Expression
opelinxp (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))

Proof of Theorem opelinxp
StepHypRef Expression
1 brinxp2 5660 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
2 df-br 5076 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)))
3 df-br 5076 . . 3 (𝐶𝑅𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑅)
43anbi2i 622 . 2 (((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
51, 2, 43bitr3i 300 1 (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2107  cin 3887  cop 4569   class class class wbr 5075   × cxp 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-dif 3891  df-un 3893  df-in 3895  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-br 5076  df-opab 5138  df-xp 5591
This theorem is referenced by:  elinxp  5923  ssrnres  6075  iss2  36448
  Copyright terms: Public domain W3C validator