MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelinxp Structured version   Visualization version   GIF version

Theorem opelinxp 5721
Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.)
Assertion
Ref Expression
opelinxp (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))

Proof of Theorem opelinxp
StepHypRef Expression
1 brinxp2 5719 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
2 df-br 5111 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)))
3 df-br 5111 . . 3 (𝐶𝑅𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑅)
43anbi2i 623 . 2 (((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
51, 2, 43bitr3i 301 1 (⟨𝐶, 𝐷⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶𝐴𝐷𝐵) ∧ ⟨𝐶, 𝐷⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3916  cop 4598   class class class wbr 5110   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647
This theorem is referenced by:  elinxp  5993  ssrnres  6154  iss2  38333
  Copyright terms: Public domain W3C validator