Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelinxp | Structured version Visualization version GIF version |
Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.) |
Ref | Expression |
---|---|
opelinxp | ⊢ (〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 5655 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) | |
2 | df-br 5071 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ 〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵))) | |
3 | df-br 5071 | . . 3 ⊢ (𝐶𝑅𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝑅) | |
4 | 3 | anbi2i 622 | . 2 ⊢ (((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr3i 300 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 〈cop 4564 class class class wbr 5070 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 |
This theorem is referenced by: elinxp 5918 ssrnres 6070 iss2 36406 |
Copyright terms: Public domain | W3C validator |