| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelinxp | Structured version Visualization version GIF version | ||
| Description: Ordered pair element in an intersection with Cartesian product. (Contributed by Peter Mazsa, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| opelinxp | ⊢ (〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 5743 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) | |
| 2 | df-br 5124 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ 〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵))) | |
| 3 | df-br 5124 | . . 3 ⊢ (𝐶𝑅𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝑅) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ (((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
| 5 | 1, 2, 4 | 3bitr3i 301 | 1 ⊢ (〈𝐶, 𝐷〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 〈𝐶, 𝐷〉 ∈ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∩ cin 3930 〈cop 4612 class class class wbr 5123 × cxp 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 |
| This theorem is referenced by: elinxp 6017 ssrnres 6178 iss2 38304 |
| Copyright terms: Public domain | W3C validator |