MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp Structured version   Visualization version   GIF version

Theorem brinxp 5767
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 5766 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
21baibr 536 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  cin 3962   class class class wbr 5148   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695
This theorem is referenced by:  poinxp  5769  soinxp  5770  frinxp  5771  seinxp  5772  exfo  7125  isores2  7353  ltpiord  10925  ordpinq  10981  pwsleval  17540  tsrss  18647  ordtrest  23226  ordtrest2lem  23227  ordtrestNEW  33882  ordtrest2NEWlem  33883  satefvfmla0  35403
  Copyright terms: Public domain W3C validator