MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp Structured version   Visualization version   GIF version

Theorem brinxp 5664
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 5663 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
21baibr 536 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2109  cin 3890   class class class wbr 5078   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594
This theorem is referenced by:  poinxp  5666  soinxp  5667  frinxp  5668  seinxp  5669  exfo  6975  isores2  7197  ltpiord  10627  ordpinq  10683  pwsleval  17185  tsrss  18288  ordtrest  22334  ordtrest2lem  22335  ordtrestNEW  31850  ordtrest2NEWlem  31851  satefvfmla0  33359
  Copyright terms: Public domain W3C validator