MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp Structured version   Visualization version   GIF version

Theorem brinxp 5754
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
brinxp ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))

Proof of Theorem brinxp
StepHypRef Expression
1 brinxp2 5753 . 2 (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝐴𝑅𝐵))
21baibr 536 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  cin 3947   class class class wbr 5148   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682
This theorem is referenced by:  poinxp  5756  soinxp  5757  frinxp  5758  seinxp  5759  exfo  7106  isores2  7333  ltpiord  10888  ordpinq  10944  pwsleval  17446  tsrss  18552  ordtrest  23026  ordtrest2lem  23027  ordtrestNEW  33365  ordtrest2NEWlem  33366  satefvfmla0  34873
  Copyright terms: Public domain W3C validator