| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| brinxp | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 5701 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
| 2 | 1 | baibr 536 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 class class class wbr 5095 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 |
| This theorem is referenced by: poinxp 5704 soinxp 5705 frinxp 5706 seinxp 5707 exfo 7043 isores2 7274 ltpiord 10800 ordpinq 10856 pwsleval 17415 tsrss 18513 ordtrest 23105 ordtrest2lem 23106 ordtrestNEW 33887 ordtrest2NEWlem 33888 satefvfmla0 35390 |
| Copyright terms: Public domain | W3C validator |