| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brinxp | Structured version Visualization version GIF version | ||
| Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| brinxp | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brinxp2 5732 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
| 2 | 1 | baibr 536 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3925 class class class wbr 5119 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: poinxp 5735 soinxp 5736 frinxp 5737 seinxp 5738 exfo 7095 isores2 7326 ltpiord 10901 ordpinq 10957 pwsleval 17507 tsrss 18599 ordtrest 23140 ordtrest2lem 23141 ordtrestNEW 33952 ordtrest2NEWlem 33953 satefvfmla0 35440 |
| Copyright terms: Public domain | W3C validator |