MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp2 Structured version   Visualization version   GIF version

Theorem brinxp2 5737
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1088. (Revised by Peter Mazsa, 18-Sep-2022.)
Assertion
Ref Expression
brinxp2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 5176 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷))
2 ancom 460 . 2 ((𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷))
3 brxp 5708 . . 3 (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶𝐴𝐷𝐵))
43anbi1i 624 . 2 ((𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
51, 2, 43bitri 297 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3930   class class class wbr 5124   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665
This theorem is referenced by:  brinxp  5738  opelinxp  5739  fncnv  6614  erinxp  8810  fpwwe2lem7  10656  fpwwe2lem8  10657  fpwwe2lem11  10660  nqerf  10949  nqerid  10952  isstruct  17176  pwsle  17511  psss  18595  psssdm2  18596  pi1cpbl  25000  pi1grplem  25005  br1cnvinxp  38279  brres2  38291  inxpss  38334  inxpss3  38337  idinxpssinxp2  38341  inxp2  38390  inxpxrn  38418
  Copyright terms: Public domain W3C validator