Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1090. (Revised by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
brinxp2 | ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 5082 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷)) | |
2 | ancom 464 | . 2 ⊢ ((𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷)) | |
3 | brxp 5572 | . . 3 ⊢ (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
4 | 3 | anbi1i 627 | . 2 ⊢ ((𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
5 | 1, 2, 4 | 3bitri 300 | 1 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∈ wcel 2114 ∩ cin 3842 class class class wbr 5030 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 |
This theorem is referenced by: brinxp 5601 opelinxp 5602 fncnv 6412 erinxp 8402 fpwwe2lem7 10137 fpwwe2lem8 10138 fpwwe2lem11 10141 nqerf 10430 nqerid 10433 isstruct 16599 pwsle 16868 psss 17940 psssdm2 17941 pi1cpbl 23796 pi1grplem 23801 brres2 36030 inxpss 36070 inxpss3 36072 idinxpssinxp2 36076 inxp2 36120 inxpxrn 36144 |
Copyright terms: Public domain | W3C validator |