![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1086. (Revised by Peter Mazsa, 18-Sep-2022.) |
Ref | Expression |
---|---|
brinxp2 | ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brin 5190 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷)) | |
2 | ancom 460 | . 2 ⊢ ((𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷)) | |
3 | brxp 5715 | . . 3 ⊢ (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
4 | 3 | anbi1i 623 | . 2 ⊢ ((𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∩ cin 3939 class class class wbr 5138 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 |
This theorem is referenced by: brinxp 5744 opelinxp 5745 fncnv 6611 erinxp 8781 fpwwe2lem7 10628 fpwwe2lem8 10629 fpwwe2lem11 10632 nqerf 10921 nqerid 10924 isstruct 17084 pwsle 17437 psss 18535 psssdm2 18536 pi1cpbl 24893 pi1grplem 24898 br1cnvinxp 37614 brres2 37626 inxpss 37670 inxpss3 37673 idinxpssinxp2 37677 inxp2 37726 inxpxrn 37755 |
Copyright terms: Public domain | W3C validator |