| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version | ||
| Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1088. (Revised by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| brinxp2 | ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 5147 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷)) | |
| 3 | brxp 5670 | . . 3 ⊢ (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∩ cin 3897 class class class wbr 5095 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 |
| This theorem is referenced by: brinxp 5700 opelinxp 5701 fncnv 6562 erinxp 8724 fpwwe2lem7 10539 fpwwe2lem8 10540 fpwwe2lem11 10543 nqerf 10832 nqerid 10835 isstruct 17070 pwsle 17404 psss 18494 psssdm2 18495 pi1cpbl 24991 pi1grplem 24996 br1cnvinxp 38366 brres2 38378 inxpss 38422 inxpss3 38425 idinxpssinxp2 38429 inxp2 38472 inxpxrn 38515 |
| Copyright terms: Public domain | W3C validator |