MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp2 Structured version   Visualization version   GIF version

Theorem brinxp2 5777
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1089. (Revised by Peter Mazsa, 18-Sep-2022.)
Assertion
Ref Expression
brinxp2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 5218 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷))
2 ancom 460 . 2 ((𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷))
3 brxp 5749 . . 3 (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶𝐴𝐷𝐵))
43anbi1i 623 . 2 ((𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
51, 2, 43bitri 297 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  cin 3975   class class class wbr 5166   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706
This theorem is referenced by:  brinxp  5778  opelinxp  5779  fncnv  6651  erinxp  8849  fpwwe2lem7  10706  fpwwe2lem8  10707  fpwwe2lem11  10710  nqerf  10999  nqerid  11002  isstruct  17199  pwsle  17552  psss  18650  psssdm2  18651  pi1cpbl  25096  pi1grplem  25101  br1cnvinxp  38212  brres2  38224  inxpss  38267  inxpss3  38270  idinxpssinxp2  38274  inxp2  38323  inxpxrn  38351
  Copyright terms: Public domain W3C validator