| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version | ||
| Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1088. (Revised by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| brinxp2 | ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 5159 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷)) | |
| 3 | brxp 5687 | . . 3 ⊢ (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3913 class class class wbr 5107 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: brinxp 5717 opelinxp 5718 fncnv 6589 erinxp 8764 fpwwe2lem7 10590 fpwwe2lem8 10591 fpwwe2lem11 10594 nqerf 10883 nqerid 10886 isstruct 17122 pwsle 17455 psss 18539 psssdm2 18540 pi1cpbl 24944 pi1grplem 24949 br1cnvinxp 38245 brres2 38257 inxpss 38299 inxpss3 38302 idinxpssinxp2 38306 inxp2 38349 inxpxrn 38381 |
| Copyright terms: Public domain | W3C validator |