| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brinxp2 | Structured version Visualization version GIF version | ||
| Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1088. (Revised by Peter Mazsa, 18-Sep-2022.) |
| Ref | Expression |
|---|---|
| brinxp2 | ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin 5154 | . 2 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷)) | |
| 2 | ancom 460 | . 2 ⊢ ((𝐶𝑅𝐷 ∧ 𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷)) | |
| 3 | brxp 5680 | . . 3 ⊢ (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
| 4 | 3 | anbi1i 624 | . 2 ⊢ ((𝐶(𝐴 × 𝐵)𝐷 ∧ 𝐶𝑅𝐷) ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ∧ 𝐶𝑅𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3910 class class class wbr 5102 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: brinxp 5710 opelinxp 5711 fncnv 6573 erinxp 8741 fpwwe2lem7 10566 fpwwe2lem8 10567 fpwwe2lem11 10570 nqerf 10859 nqerid 10862 isstruct 17098 pwsle 17431 psss 18515 psssdm2 18516 pi1cpbl 24920 pi1grplem 24925 br1cnvinxp 38218 brres2 38230 inxpss 38272 inxpss3 38275 idinxpssinxp2 38279 inxp2 38322 inxpxrn 38354 |
| Copyright terms: Public domain | W3C validator |