MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brinxp2 Structured version   Visualization version   GIF version

Theorem brinxp2 5655
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.) Group conjuncts and avoid df-3an 1087. (Revised by Peter Mazsa, 18-Sep-2022.)
Assertion
Ref Expression
brinxp2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))

Proof of Theorem brinxp2
StepHypRef Expression
1 brin 5122 . 2 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ (𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷))
2 ancom 460 . 2 ((𝐶𝑅𝐷𝐶(𝐴 × 𝐵)𝐷) ↔ (𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷))
3 brxp 5627 . . 3 (𝐶(𝐴 × 𝐵)𝐷 ↔ (𝐶𝐴𝐷𝐵))
43anbi1i 623 . 2 ((𝐶(𝐴 × 𝐵)𝐷𝐶𝑅𝐷) ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
51, 2, 43bitri 296 1 (𝐶(𝑅 ∩ (𝐴 × 𝐵))𝐷 ↔ ((𝐶𝐴𝐷𝐵) ∧ 𝐶𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  cin 3882   class class class wbr 5070   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586
This theorem is referenced by:  brinxp  5656  opelinxp  5657  fncnv  6491  erinxp  8538  fpwwe2lem7  10324  fpwwe2lem8  10325  fpwwe2lem11  10328  nqerf  10617  nqerid  10620  isstruct  16781  pwsle  17120  psss  18213  psssdm2  18214  pi1cpbl  24113  pi1grplem  24118  brres2  36334  inxpss  36374  inxpss3  36376  idinxpssinxp2  36380  inxp2  36424  inxpxrn  36448
  Copyright terms: Public domain W3C validator