Proof of Theorem elinxp
Step | Hyp | Ref
| Expression |
1 | | relinxp 5661 |
. . . . 5
⊢ Rel
(𝑅 ∩ (𝐴 × 𝐵)) |
2 | | elrel 5645 |
. . . . 5
⊢ ((Rel
(𝑅 ∩ (𝐴 × 𝐵)) ∧ 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))) → ∃𝑥∃𝑦 𝐶 = 〈𝑥, 𝑦〉) |
3 | 1, 2 | mpan 689 |
. . . 4
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥∃𝑦 𝐶 = 〈𝑥, 𝑦〉) |
4 | | eleq1 2839 |
. . . . . . . . 9
⊢ (𝐶 = 〈𝑥, 𝑦〉 → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ 〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)))) |
5 | 4 | biimpd 232 |
. . . . . . . 8
⊢ (𝐶 = 〈𝑥, 𝑦〉 → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → 〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)))) |
6 | | opelinxp 5605 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
7 | 6 | biimpi 219 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
8 | 5, 7 | syl6com 37 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = 〈𝑥, 𝑦〉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅))) |
9 | 8 | ancld 554 |
. . . . . 6
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = 〈𝑥, 𝑦〉 → (𝐶 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)))) |
10 | | an12 644 |
. . . . . 6
⊢ ((𝐶 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅))) |
11 | 9, 10 | syl6ib 254 |
. . . . 5
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = 〈𝑥, 𝑦〉 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)))) |
12 | 11 | 2eximdv 1920 |
. . . 4
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (∃𝑥∃𝑦 𝐶 = 〈𝑥, 𝑦〉 → ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)))) |
13 | 3, 12 | mpd 15 |
. . 3
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅))) |
14 | | r2ex 3227 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅))) |
15 | 13, 14 | sylibr 237 |
. 2
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) |
16 | 6 | simplbi2 504 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝑅 → 〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)))) |
17 | 4 | biimprd 251 |
. . . . 5
⊢ (𝐶 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))) |
18 | 16, 17 | syl9 77 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ 𝑅 → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))))) |
19 | 18 | impd 414 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ((𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))) |
20 | 19 | rexlimivv 3216 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))) |
21 | 15, 20 | impbii 212 |
1
⊢ (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐶 = 〈𝑥, 𝑦〉 ∧ 〈𝑥, 𝑦〉 ∈ 𝑅)) |