MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinxp Structured version   Visualization version   GIF version

Theorem elinxp 5929
Description: Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elinxp (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦

Proof of Theorem elinxp
StepHypRef Expression
1 relinxp 5724 . . . . 5 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 elrel 5708 . . . . 5 ((Rel (𝑅 ∩ (𝐴 × 𝐵)) ∧ 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
31, 2mpan 687 . . . 4 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
4 eleq1 2826 . . . . . . . . 9 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
54biimpd 228 . . . . . . . 8 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
6 opelinxp 5666 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
76biimpi 215 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
85, 7syl6com 37 . . . . . . 7 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
98ancld 551 . . . . . 6 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
10 an12 642 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
119, 10syl6ib 250 . . . . 5 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → ((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
12112eximdv 1922 . . . 4 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
133, 12mpd 15 . . 3 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
14 r2ex 3232 . . 3 (∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
1513, 14sylibr 233 . 2 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
166simplbi2 501 . . . . 5 ((𝑥𝐴𝑦𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
174biimprd 247 . . . . 5 (𝐶 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))))
1816, 17syl9 77 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))))
1918impd 411 . . 3 ((𝑥𝐴𝑦𝐵) → ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))))
2019rexlimivv 3221 . 2 (∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))
2115, 20impbii 208 1 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065  cin 3886  cop 4567   × cxp 5587  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  elres  5930  elidinxp  5951
  Copyright terms: Public domain W3C validator