MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinxp Structured version   Visualization version   GIF version

Theorem elinxp 6036
Description: Membership in an intersection with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
Assertion
Ref Expression
elinxp (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦

Proof of Theorem elinxp
StepHypRef Expression
1 relinxp 5823 . . . . 5 Rel (𝑅 ∩ (𝐴 × 𝐵))
2 elrel 5807 . . . . 5 ((Rel (𝑅 ∩ (𝐴 × 𝐵)) ∧ 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
31, 2mpan 690 . . . 4 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
4 eleq1 2828 . . . . . . . . 9 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
54biimpd 229 . . . . . . . 8 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
6 opelinxp 5764 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
76biimpi 216 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
85, 7syl6com 37 . . . . . . 7 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
98ancld 550 . . . . . 6 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
10 an12 645 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
119, 10imbitrdi 251 . . . . 5 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (𝐶 = ⟨𝑥, 𝑦⟩ → ((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
12112eximdv 1918 . . . 4 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))))
133, 12mpd 15 . . 3 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
14 r2ex 3195 . . 3 (∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅)))
1513, 14sylibr 234 . 2 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) → ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
166simplbi2 500 . . . . 5 ((𝑥𝐴𝑦𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵))))
174biimprd 248 . . . . 5 (𝐶 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∩ (𝐴 × 𝐵)) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))))
1816, 17syl9 77 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝐶 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))))
1918impd 410 . . 3 ((𝑥𝐴𝑦𝐵) → ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵))))
2019rexlimivv 3200 . 2 (∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅) → 𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)))
2115, 20impbii 209 1 (𝐶 ∈ (𝑅 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 (𝐶 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wrex 3069  cin 3949  cop 4631   × cxp 5682  Rel wrel 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-rel 5691
This theorem is referenced by:  elres  6037  elidinxp  6061
  Copyright terms: Public domain W3C validator