![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 381. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
2 | 1 | ex 414 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | 3 | ex 414 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
7 | 2, 4, 6 | pm5.21ndd 381 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ideqg 5852 fvelimab 6965 brrpssg 7715 ordsucelsuc 7810 releldm2 8029 relbrtpos 8222 relelec 8748 elfiun 9425 fpwwe2lem2 10627 fpwwelem 10640 fzrev3 13567 elfzp12 13580 eqgval 19057 eltg 22460 eltg2 22461 cncnp2 22785 isref 23013 islocfin 23021 opeldifid 31830 isfne 35224 copsex2b 36021 bj-ideqgALT 36039 bj-idreseq 36043 bj-ideqg1ALT 36046 opelopab3 36586 isdivrngo 36818 brssr 37371 islshpkrN 37990 dihatexv2 40210 |
Copyright terms: Public domain | W3C validator |