MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   GIF version

Theorem pm5.21nd 801
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1 ((𝜑𝜓) → 𝜃)
pm5.21nd.2 ((𝜑𝜒) → 𝜃)
pm5.21nd.3 (𝜃 → (𝜓𝜒))
Assertion
Ref Expression
pm5.21nd (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
3 pm5.21nd.2 . . 3 ((𝜑𝜒) → 𝜃)
43ex 412 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21nd.3 . . 3 (𝜃 → (𝜓𝜒))
65a1i 11 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
72, 4, 6pm5.21ndd 379 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ideqg  5791  fvelimab  6894  brrpssg  7658  ordsucelsuc  7752  releldm2  7975  relbrtpos  8167  relelec  8669  elfiun  9314  fpwwe2lem2  10520  fpwwelem  10533  fzrev3  13487  elfzp12  13500  eqgval  19087  ismhp  22053  eltg  22870  eltg2  22871  cncnp2  23194  isref  23422  islocfin  23430  opeldifid  32574  isfne  36372  copsex2b  37173  bj-ideqgALT  37191  bj-idreseq  37195  bj-ideqg1ALT  37198  opelopab3  37757  isdivrngo  37989  brssr  38537  islshpkrN  39158  dihatexv2  41377  isinito4a  49579  cmddu  49699
  Copyright terms: Public domain W3C validator