| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 4, 6 | pm5.21ndd 379 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ideqg 5791 fvelimab 6894 brrpssg 7658 ordsucelsuc 7752 releldm2 7975 relbrtpos 8167 relelec 8669 elfiun 9314 fpwwe2lem2 10520 fpwwelem 10533 fzrev3 13487 elfzp12 13500 eqgval 19087 ismhp 22053 eltg 22870 eltg2 22871 cncnp2 23194 isref 23422 islocfin 23430 opeldifid 32574 isfne 36372 copsex2b 37173 bj-ideqgALT 37191 bj-idreseq 37195 bj-ideqg1ALT 37198 opelopab3 37757 isdivrngo 37989 brssr 38537 islshpkrN 39158 dihatexv2 41377 isinito4a 49579 cmddu 49699 |
| Copyright terms: Public domain | W3C validator |