MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   GIF version

Theorem pm5.21nd 801
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1 ((𝜑𝜓) → 𝜃)
pm5.21nd.2 ((𝜑𝜒) → 𝜃)
pm5.21nd.3 (𝜃 → (𝜓𝜒))
Assertion
Ref Expression
pm5.21nd (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
3 pm5.21nd.2 . . 3 ((𝜑𝜒) → 𝜃)
43ex 412 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21nd.3 . . 3 (𝜃 → (𝜓𝜒))
65a1i 11 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
72, 4, 6pm5.21ndd 379 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ideqg  5818  fvelimab  6936  brrpssg  7704  ordsucelsuc  7800  releldm2  8025  relbrtpos  8219  relelec  8721  elfiun  9388  fpwwe2lem2  10592  fpwwelem  10605  fzrev3  13558  elfzp12  13571  eqgval  19116  ismhp  22034  eltg  22851  eltg2  22852  cncnp2  23175  isref  23403  islocfin  23411  opeldifid  32535  isfne  36334  copsex2b  37135  bj-ideqgALT  37153  bj-idreseq  37157  bj-ideqg1ALT  37160  opelopab3  37719  isdivrngo  37951  brssr  38499  islshpkrN  39120  dihatexv2  41340  isinito4a  49541  cmddu  49661
  Copyright terms: Public domain W3C validator