| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 4, 6 | pm5.21ndd 379 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ideqg 5815 fvelimab 6933 brrpssg 7701 ordsucelsuc 7797 releldm2 8022 relbrtpos 8216 relelec 8718 elfiun 9381 fpwwe2lem2 10585 fpwwelem 10598 fzrev3 13551 elfzp12 13564 eqgval 19109 ismhp 22027 eltg 22844 eltg2 22845 cncnp2 23168 isref 23396 islocfin 23404 opeldifid 32528 isfne 36327 copsex2b 37128 bj-ideqgALT 37146 bj-idreseq 37150 bj-ideqg1ALT 37153 opelopab3 37712 isdivrngo 37944 brssr 38492 islshpkrN 39113 dihatexv2 41333 isinito4a 49537 cmddu 49657 |
| Copyright terms: Public domain | W3C validator |