| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 4, 6 | pm5.21ndd 379 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ideqg 5831 fvelimab 6951 brrpssg 7719 ordsucelsuc 7816 releldm2 8042 relbrtpos 8236 relelec 8766 elfiun 9442 fpwwe2lem2 10646 fpwwelem 10659 fzrev3 13607 elfzp12 13620 eqgval 19160 ismhp 22078 eltg 22895 eltg2 22896 cncnp2 23219 isref 23447 islocfin 23455 opeldifid 32580 isfne 36357 copsex2b 37158 bj-ideqgALT 37176 bj-idreseq 37180 bj-ideqg1ALT 37183 opelopab3 37742 isdivrngo 37974 brssr 38519 islshpkrN 39138 dihatexv2 41358 |
| Copyright terms: Public domain | W3C validator |