MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   GIF version

Theorem pm5.21nd 801
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1 ((𝜑𝜓) → 𝜃)
pm5.21nd.2 ((𝜑𝜒) → 𝜃)
pm5.21nd.3 (𝜃 → (𝜓𝜒))
Assertion
Ref Expression
pm5.21nd (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
3 pm5.21nd.2 . . 3 ((𝜑𝜒) → 𝜃)
43ex 412 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21nd.3 . . 3 (𝜃 → (𝜓𝜒))
65a1i 11 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
72, 4, 6pm5.21ndd 379 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ideqg  5798  fvelimab  6899  brrpssg  7665  ordsucelsuc  7761  releldm2  7985  relbrtpos  8177  relelec  8679  elfiun  9339  fpwwe2lem2  10545  fpwwelem  10558  fzrev3  13511  elfzp12  13524  eqgval  19074  ismhp  22043  eltg  22860  eltg2  22861  cncnp2  23184  isref  23412  islocfin  23420  opeldifid  32561  isfne  36312  copsex2b  37113  bj-ideqgALT  37131  bj-idreseq  37135  bj-ideqg1ALT  37138  opelopab3  37697  isdivrngo  37929  brssr  38477  islshpkrN  39098  dihatexv2  41318  isinito4a  49534  cmddu  49654
  Copyright terms: Public domain W3C validator