Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version |
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 380. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
7 | 2, 4, 6 | pm5.21ndd 380 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ideqg 5757 fvelimab 6835 brrpssg 7569 ordsucelsuc 7657 releldm2 7870 relbrtpos 8037 relelec 8517 elfiun 9150 fpwwe2lem2 10372 fpwwelem 10385 fzrev3 13304 elfzp12 13317 eqgval 18786 eltg 22088 eltg2 22089 cncnp2 22413 isref 22641 islocfin 22649 opeldifid 30917 isfne 34507 copsex2b 35290 bj-ideqgALT 35308 bj-idreseq 35312 bj-ideqg1ALT 35315 opelopab3 35854 isdivrngo 36087 brssr 36598 islshpkrN 37113 dihatexv2 39332 |
Copyright terms: Public domain | W3C validator |