MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   GIF version

Theorem pm5.21nd 801
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1 ((𝜑𝜓) → 𝜃)
pm5.21nd.2 ((𝜑𝜒) → 𝜃)
pm5.21nd.3 (𝜃 → (𝜓𝜒))
Assertion
Ref Expression
pm5.21nd (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
3 pm5.21nd.2 . . 3 ((𝜑𝜒) → 𝜃)
43ex 412 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21nd.3 . . 3 (𝜃 → (𝜓𝜒))
65a1i 11 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
72, 4, 6pm5.21ndd 379 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ideqg  5795  fvelimab  6900  brrpssg  7664  ordsucelsuc  7758  releldm2  7981  relbrtpos  8173  relelec  8675  elfiun  9321  fpwwe2lem2  10530  fpwwelem  10543  fzrev3  13492  elfzp12  13505  eqgval  19091  ismhp  22056  eltg  22873  eltg2  22874  cncnp2  23197  isref  23425  islocfin  23433  opeldifid  32581  isfne  36404  copsex2b  37205  bj-ideqgALT  37223  bj-idreseq  37227  bj-ideqg1ALT  37230  opelopab3  37778  isdivrngo  38010  brssr  38613  islshpkrN  39239  dihatexv2  41458  isinito4a  49673  cmddu  49793
  Copyright terms: Public domain W3C validator