MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.21nd Structured version   Visualization version   GIF version

Theorem pm5.21nd 801
Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
Hypotheses
Ref Expression
pm5.21nd.1 ((𝜑𝜓) → 𝜃)
pm5.21nd.2 ((𝜑𝜒) → 𝜃)
pm5.21nd.3 (𝜃 → (𝜓𝜒))
Assertion
Ref Expression
pm5.21nd (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.21nd
StepHypRef Expression
1 pm5.21nd.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
3 pm5.21nd.2 . . 3 ((𝜑𝜒) → 𝜃)
43ex 412 . 2 (𝜑 → (𝜒𝜃))
5 pm5.21nd.3 . . 3 (𝜃 → (𝜓𝜒))
65a1i 11 . 2 (𝜑 → (𝜃 → (𝜓𝜒)))
72, 4, 6pm5.21ndd 379 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ideqg  5831  fvelimab  6951  brrpssg  7719  ordsucelsuc  7816  releldm2  8042  relbrtpos  8236  relelec  8766  elfiun  9442  fpwwe2lem2  10646  fpwwelem  10659  fzrev3  13607  elfzp12  13620  eqgval  19160  ismhp  22078  eltg  22895  eltg2  22896  cncnp2  23219  isref  23447  islocfin  23455  opeldifid  32580  isfne  36357  copsex2b  37158  bj-ideqgALT  37176  bj-idreseq  37180  bj-ideqg1ALT  37183  opelopab3  37742  isdivrngo  37974  brssr  38519  islshpkrN  39138  dihatexv2  41358
  Copyright terms: Public domain W3C validator