| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.21nd | Structured version Visualization version GIF version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 379. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
| Ref | Expression |
|---|---|
| pm5.21nd.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| pm5.21nd.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| pm5.21nd.3 | ⊢ (𝜃 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.21nd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21nd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | pm5.21nd.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 4 | 3 | ex 412 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 5 | pm5.21nd.3 | . . 3 ⊢ (𝜃 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → (𝜃 → (𝜓 ↔ 𝜒))) |
| 7 | 2, 4, 6 | pm5.21ndd 379 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ideqg 5795 fvelimab 6900 brrpssg 7664 ordsucelsuc 7758 releldm2 7981 relbrtpos 8173 relelec 8675 elfiun 9321 fpwwe2lem2 10530 fpwwelem 10543 fzrev3 13492 elfzp12 13505 eqgval 19091 ismhp 22056 eltg 22873 eltg2 22874 cncnp2 23197 isref 23425 islocfin 23433 opeldifid 32581 isfne 36404 copsex2b 37205 bj-ideqgALT 37223 bj-idreseq 37227 bj-ideqg1ALT 37230 opelopab3 37778 isdivrngo 38010 brssr 38613 islshpkrN 39239 dihatexv2 41458 isinito4a 49673 cmddu 49793 |
| Copyright terms: Public domain | W3C validator |